Skip to main content

The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 7

Abstract

To determine the full automorphism group of compact Riemann and Klein surfaces is a hard problem, although some partial results are known. For example, the automorphisms groups of hyperelliptic surfaces, and those of (compact, non-orientable, unbordered) Klein surfaces whose genus is less or equal to 6 are known. In this paper the full automorphism groups of the surfaces of genus 7 are calculated.

This is a preview of subscription content, access via your institution.

References

  1. Alling, N.L., Greenleaf, N.: Foundations of the Theory of Klein Surfaces. Lect. Notes Math. 219. Springer (1971)

  2. Bacelo, A.: The full group of automorphism of non-orientable unbordered Klein surfaces of topological genus 6. Rev. Real Acad. Cienc. Exact. Fís. Nat. Madrid RACSAM. doi:10.1007/s13398-017-0387-6

  3. Bujalance, E.: Normal NEC signatures. Ill. J. Math. 26, 519–530 (1982)

    MATH  Google Scholar 

  4. Bujalance, E.: Cyclic groups of automorphisms of compact non-orientable Klein surfaces without boundary. Pac. J. Math. 109, 279–289 (1983)

    Article  MATH  Google Scholar 

  5. Bujalance, E., Bujalance, J.A., Gromadzki, G., Martínez, E.: The groups of automorphisms of non-orientable hyperelliptic Klein surfaces without boundary. Lect. Notes in Math. 1398, pp. 43–51. Springer (1989)

  6. Bujalance, E., Cirre, F.J., Conder, M.D.E.: Extensions of finite cyclic groups actions on non-orientable surfaces. Trans. Am. Math. Soc 365, 4209–4227 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  7. Bujalance, E., Etayo, J.J., Gamboa, J.M., Gromadzki, G.: Automorphism groups of compact bordered Klein surfaces. A combinatorial approach. Lect. Notes in Math. 1439. Springer (1990)

  8. Bujalance, E., Etayo, J.J., Martínez, E.: The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5. Rev. Mat. Complut. 27, 305–326 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  9. Conder, M., Dobcsányi, P.: Determination of all regular maps of small genus. J. Comb. Theory Ser. B 81(2), 224–242 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  10. Conder, M.: https://www.math.auckland.ac.nz/~conder/GroupsWithCrosscapNumber3to65.txt

  11. Estévez, J.L., Izquierdo, M.: Non-normal pairs of non-Euclidean crystallographic groups. Bull. Lond. Math. Soc. 38, 113–123 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  12. Etayo, J.J., Martínez, E.: The symmetric crosscap number of the groups of small-order. J. Algebra Appl. 12, 1250164 (2013). 16 pp

    MathSciNet  Article  MATH  Google Scholar 

  13. Gamboa, J.M.: Compact Klein surfaces with boundary viewed as real compact smooth algebraic curves. Mem. Real Acad. Cienc. Exact. Fís. Nat. Madr. 27, iv+96 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Hall Jr, M., Senior, J.K.: The Groups of Order \(2^n\) (\(n \le 6\)). Mc Millan Co., New York (1964)

    MATH  Google Scholar 

  15. Macbeath, A.M.: The classification of non-Euclidean crystallographic groups. Can. J. Math. 19, 1192–1205 (1967)

    MathSciNet  Article  MATH  Google Scholar 

  16. May, C.L.: The symmetric crosscap number of a group. Glasg. Math. J. 41, 399–410 (2001)

    MathSciNet  MATH  Google Scholar 

  17. May, C.L., Zimmerman, J.: The groups of symmetric genus \(\sigma \le 8\). Commun. Algebra 36(11), 4078–4095 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  18. Preston, R.: Projective structures and fundamental domains on compact Klein surfaces. Thesis Univ. of Texas (1975)

  19. Singerman, D.: Automorphisms of compact non-orientable Riemann surfaces. Glasg. Math. J. 12, 50–59 (1971)

    MathSciNet  Article  MATH  Google Scholar 

  20. Tucker, T.W.: Symmetric embeddings of Cayley graphs in non-orientable surfaces. In: Alavy, I., et al. (eds.) Graph Theory, Combinatorics and Applications, pp. 1105–1120. Wiley, Hoboken (1991)

    Google Scholar 

  21. Wilkie, H.C.: On non-Euclidean crystallographic groups. Math. Z. 91, 87–102 (1966)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Bacelo.

Additional information

The author is partially supported by UCM910444 and MTM2014-55565.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bacelo, A. The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 7. Rev Mat Complut 31, 247–261 (2018). https://doi.org/10.1007/s13163-017-0245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-017-0245-2

Keywords

  • Symmetric crosscap number
  • Klein surfaces
  • Full group of automorphism

Mathematics Subject Classification

  • Primary 57M60
  • Secondary 20F05
  • 20H10
  • 30F50