Skip to main content
Log in

A non-abelian exterior product and homology of Leibniz algebras

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We introduce a non-abelian exterior product of two crossed modules of Leibniz algebras and investigate its relation to the low-dimensional Leibniz homology. Later this non-abelian exterior product is applied to the construction of an eight term exact sequence in Leibniz homology. Also its relationship to the universal quadratic functor is established, which is applied to the comparison of the second Lie and Leibniz homologies of a Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, M., Beck, J.: Homology and standard constructions. In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pp. 245-335. Springer, Berlin (1969)

  2. Bloh, A.: A generalization of the concept of Lie algebra. Sov. Math. Dokl. 6, 1450–1452 (1965)

    MathSciNet  Google Scholar 

  3. Brown, R., Ellis, G.J.: Hopf formulae for the higher homology of a group. Bull. Lond. Math. Soc. 20(2), 124–128 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, R., Loday, J.L.: Excision homotopique en basse dimension. C. R. Acad. Sci. Paris Sér. I Math. 298(15), 353–356 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Brown, R., Loday, J.L.: Van Kampen theorems for diagrams of spaces. Topology 26(3), 311–335 (1987). (With an appendix by M. Zisman)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casas, J.M., Corral, N.: On universal central extensions of Leibniz algebras. Commun. Algebra 37(6), 2104–2120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, J.M., Khmaladze, E., Ladra, M.: Higher Hopf formula for homology of Leibniz \(n\)-algebras. J. Pure Appl. Algebra 214(6), 797–808 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, J.M., Ladra, M.: Computing low dimensional Leibniz homology of some perfect Leibniz algebras. Southeast Asian Bull. Math. 31, 683–690 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Casas, J.M., Pirashvili, T.: Ten-term exact sequence of Leibniz homology. J. Algebra 231(1), 258–264 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donadze, G., Inassaridze, N., Khmaladze, E., Ladra, M.: Cyclic homologies of crossed modules of algebras. J. Noncommut. Geom. 6(4), 749–771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donadze, G., Inassaridze, N., Ladra, M.: Cyclic homology via derived functors. Homol. Homotopy Appl. 12(2), 321–334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donadze, G., Inassaridze, N., Ladra, M.: Non-abelian tensor and exterior products of multiplicative Lie rings. Forum Math. 29(3), 563–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donadze, G., Inassaridze, N., Porter, T.: \(N\)-fold Čech derived functors and generalised Hopf type formulas. K Theory 35(3–4), 341–373 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Ellis, G.J.: A non-abelian tensor product of Lie algebras. Glasg. Math. J. 33(1), 101–120 (1991)

    Article  MATH  Google Scholar 

  15. Ellis, G.J.: Non-abelian exterior products of Lie algebras and an exact sequence in the homology of Lie algebras. J. Pure Appl. Algebra 46, 111–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Everaert, T., Gran, M., Van der Linden, T.: Higher Hopf formulae for homology via Galois theory. Adv. Math. 217(5), 2231–2267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Felipe, R., López-Reyes, N., Ongay, F.: \(R\)-matrices for Leibniz algebras. Lett. Math. Phys. 63(2), 157–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gnedbaye, A.V.: A non-abelian tensor product of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 49(4), 1149–1177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Inassaridze, H.: Non-abelian homological algebra and its applications. In: Mathematics and its Applications, vol. 421. Kluwer Academic Publishers, Dordrecht (1997)

  20. Kinyon, M.K., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Am. J. Math. 123(3), 525–550 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurdiani, R., Pirashvili, T.: A Leibniz algebra structure on the second tensor power. J. Lie Theory 12(2), 583–596 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. 39(3–4), 269–293 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Loday, J.L.: Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, 2nd edn. Springer, Berlin (1998). Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili

  24. Loday, J.L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296(1), 139–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Loday, J.L., Pirashvili, T.: The tensor category of linear maps and Leibniz algebras. Georgian Math. J. 5(3), 263–276 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lodder, J.M.: Leibniz cohomology for differentiable manifolds. Ann. Inst. Fourier (Grenoble) 48(1), 73–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pirashvili, T.: On Leibniz homology. Ann. Inst. Fourier (Grenoble) 44(2), 401–411 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Serre, J.P.: Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, 2nd edn. Springer, Berlin (1992). 1964 lectures given at Harvard University

  29. Simson, D., Tyc, A.: Connected sequences of stable derived functors and their applications. Dissertationes Math. (Rozprawy Mat.), vol. 111, p. 67 (1974)

Download references

Acknowledgements

We would like to thank the anonymous referees for their comments and suggestions that helped us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xabier García-Martínez.

Additional information

The authors were supported by Ministerio de Economía y Competitividad (Spain) (European FEDER support included), Grant MTM2016-79661-P. The second author was also supported by Xunta de Galicia, Grant GRC2013-045 (European FEDER support included), by an FPU scholarship, Ministerio de Educación, Cultura y Deporte (Spain) and by a Fundación Barrié scolarship. The third author was supported by Shota Rustaveli National Science Foundation, Grant FR/189/5-113/14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donadze, G., García-Martínez, X. & Khmaladze, E. A non-abelian exterior product and homology of Leibniz algebras. Rev Mat Complut 31, 217–236 (2018). https://doi.org/10.1007/s13163-017-0237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-017-0237-2

Keywords

Mathematics Subject Classification

Navigation