Abstract
We introduce a non-abelian exterior product of two crossed modules of Leibniz algebras and investigate its relation to the low-dimensional Leibniz homology. Later this non-abelian exterior product is applied to the construction of an eight term exact sequence in Leibniz homology. Also its relationship to the universal quadratic functor is established, which is applied to the comparison of the second Lie and Leibniz homologies of a Lie algebra.
Similar content being viewed by others
References
Barr, M., Beck, J.: Homology and standard constructions. In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pp. 245-335. Springer, Berlin (1969)
Bloh, A.: A generalization of the concept of Lie algebra. Sov. Math. Dokl. 6, 1450–1452 (1965)
Brown, R., Ellis, G.J.: Hopf formulae for the higher homology of a group. Bull. Lond. Math. Soc. 20(2), 124–128 (1988)
Brown, R., Loday, J.L.: Excision homotopique en basse dimension. C. R. Acad. Sci. Paris Sér. I Math. 298(15), 353–356 (1984)
Brown, R., Loday, J.L.: Van Kampen theorems for diagrams of spaces. Topology 26(3), 311–335 (1987). (With an appendix by M. Zisman)
Casas, J.M., Corral, N.: On universal central extensions of Leibniz algebras. Commun. Algebra 37(6), 2104–2120 (2014)
Casas, J.M., Khmaladze, E., Ladra, M.: Higher Hopf formula for homology of Leibniz \(n\)-algebras. J. Pure Appl. Algebra 214(6), 797–808 (2010)
Casas, J.M., Ladra, M.: Computing low dimensional Leibniz homology of some perfect Leibniz algebras. Southeast Asian Bull. Math. 31, 683–690 (2007)
Casas, J.M., Pirashvili, T.: Ten-term exact sequence of Leibniz homology. J. Algebra 231(1), 258–264 (2000)
Donadze, G., Inassaridze, N., Khmaladze, E., Ladra, M.: Cyclic homologies of crossed modules of algebras. J. Noncommut. Geom. 6(4), 749–771 (2012)
Donadze, G., Inassaridze, N., Ladra, M.: Cyclic homology via derived functors. Homol. Homotopy Appl. 12(2), 321–334 (2010)
Donadze, G., Inassaridze, N., Ladra, M.: Non-abelian tensor and exterior products of multiplicative Lie rings. Forum Math. 29(3), 563–574 (2017)
Donadze, G., Inassaridze, N., Porter, T.: \(N\)-fold Čech derived functors and generalised Hopf type formulas. K Theory 35(3–4), 341–373 (2005)
Ellis, G.J.: A non-abelian tensor product of Lie algebras. Glasg. Math. J. 33(1), 101–120 (1991)
Ellis, G.J.: Non-abelian exterior products of Lie algebras and an exact sequence in the homology of Lie algebras. J. Pure Appl. Algebra 46, 111–115 (1987)
Everaert, T., Gran, M., Van der Linden, T.: Higher Hopf formulae for homology via Galois theory. Adv. Math. 217(5), 2231–2267 (2008)
Felipe, R., López-Reyes, N., Ongay, F.: \(R\)-matrices for Leibniz algebras. Lett. Math. Phys. 63(2), 157–164 (2003)
Gnedbaye, A.V.: A non-abelian tensor product of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 49(4), 1149–1177 (1999)
Inassaridze, H.: Non-abelian homological algebra and its applications. In: Mathematics and its Applications, vol. 421. Kluwer Academic Publishers, Dordrecht (1997)
Kinyon, M.K., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Am. J. Math. 123(3), 525–550 (2001)
Kurdiani, R., Pirashvili, T.: A Leibniz algebra structure on the second tensor power. J. Lie Theory 12(2), 583–596 (2002)
Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. 39(3–4), 269–293 (1993)
Loday, J.L.: Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, 2nd edn. Springer, Berlin (1998). Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili
Loday, J.L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296(1), 139–158 (1993)
Loday, J.L., Pirashvili, T.: The tensor category of linear maps and Leibniz algebras. Georgian Math. J. 5(3), 263–276 (1998)
Lodder, J.M.: Leibniz cohomology for differentiable manifolds. Ann. Inst. Fourier (Grenoble) 48(1), 73–95 (1998)
Pirashvili, T.: On Leibniz homology. Ann. Inst. Fourier (Grenoble) 44(2), 401–411 (1994)
Serre, J.P.: Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, 2nd edn. Springer, Berlin (1992). 1964 lectures given at Harvard University
Simson, D., Tyc, A.: Connected sequences of stable derived functors and their applications. Dissertationes Math. (Rozprawy Mat.), vol. 111, p. 67 (1974)
Acknowledgements
We would like to thank the anonymous referees for their comments and suggestions that helped us to improve this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors were supported by Ministerio de Economía y Competitividad (Spain) (European FEDER support included), Grant MTM2016-79661-P. The second author was also supported by Xunta de Galicia, Grant GRC2013-045 (European FEDER support included), by an FPU scholarship, Ministerio de Educación, Cultura y Deporte (Spain) and by a Fundación Barrié scolarship. The third author was supported by Shota Rustaveli National Science Foundation, Grant FR/189/5-113/14.
Rights and permissions
About this article
Cite this article
Donadze, G., García-Martínez, X. & Khmaladze, E. A non-abelian exterior product and homology of Leibniz algebras. Rev Mat Complut 31, 217–236 (2018). https://doi.org/10.1007/s13163-017-0237-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-017-0237-2