Abstract
We survey classical material around Lefschetz theorems for fundamental groups, and show the relation to parts of Deligne’s program in Weil II.
Similar content being viewed by others
References
Abe, T., Esnault, H.: A Lefschetz theorem for overconvergent isocrystals with Frobenius structure. http://www.mi.fu-berlin.de/users/esnault/preprints/helene/123_abe_esn (2016)
Abe, T.: Langlands correspondence for isocrystals and existence of crystalline companions for curves. arXiv:1310.0528v1
Bhatt, B., Schloze, P.: The pro-étale topology for schemes. Astérisque 369, 99–201 (2015)
Bott, R.: On a theorem of Lefschetz. Michigan Math. J 6, 211–216 (1959)
Crew, R.: F-isocrystals and p-adic representations, Algebraic Geometry, Bowdoin (1985). In: Proceedings of Symposia in Pure Mathematics 46, Part 2, pp 111–138. American Mathematical Society, Providence (1987)
Crew, R.: Specialization of crystalline cohomology. Duke Math. J. 53(3), 749–757 (1986)
Deligne, P.: La conjecture de Weil II. Publ. Math. Inst. Hautes Études Sci. 52, 137–252 (1980)
Deligne, P.: Finitude de l’extension de \({\mathbb{Q}}\) engendrée par des traces de Frobenius, en caractéristique finie. Mosc. Math. J 12(3), 497–514 (2012). (668)
Drinfeld, V.: On a conjecture of Deligne. Mosc. Math. J. 12(3), 515–542 (2012). (668)
Esnault, H. : A remark on Deligne’s finiteness theorem, Int. Math. Res. Not. http://www.mi.fu-berlin.de/users/esnault/preprints/helene/121_finiteness (2016, in print)
Esnault, H., Kerz, M.: A finiteness theorem for Galois representations of function fields over finite fields (after Deligne). Acta Math. Vietnam. 37(4), 531–562 (2012)
Esnault, H., Kindler, L.: Lefschetz theorems for tamely ramified coverings. Proc. Am. Math. Soc. 144, 5071–5080 (2016)
Forster, O.: Lectures on Riemann Surfaces. Graduate Text in Mathematics, vol. 81. Springer, New York (1981)
Fundamental groups of schemes. http://stacks.math.columbia.edu
Grothendieck, A.: Caractérisation et classification des groupes à type multiplicatif, SGA3 Exp. X
Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, Séminaire de Géométrie Algébrique du Bois-Marie, Adv. St.in Pure Math., vol. 2. North-Holland Publ. Co. (1962)
Grothendieck, A.: Éléments de Géométrie Algébrique IV, Études locales des schémas et des morphismes de schémas, Publ. math. I. H. É. S., vol. 62 (1967)
Grothendieck, A.: Éléments de Géométrie Algébrique III, Études cohomologiques des faisceaux cohérents, Publ. math. I. H. É. S., vol. 11 (1961)
Grothendieck, A.: Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois-Marie, Lecture Notes in Mathematics, vol. 224 (1971)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Kedlaya, K.: Notes on Isocrystals. http://kskedlaya.org/papers/isocrystals (2016, preprint)
Kedlaya, K.: Semistable reduction for overconvergent F-isocrystals, I: unipotence and logarithmic extensions. Compos. Math. 143, 1164–1212 (2007)
Kerz, M., Schmidt, A.: On different notions of tameness in arithmetic geometry. Math. Ann. 346(3), 641–668 (2010)
Koshikawa, T.: Overconvergent unit-root \(F\)-isocrystals are isotrivial. arXiv: 1511.02884v2
Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147(1), 1–241 (2002)
Lefschetz, S.: L’Analysis situs et la géométrie algébrique. Gauthier-Villars, Paris (1950)
Milne, J.S.: Fields and Galois Theory. http://www.jmilne.org/math/CourseNotes/ft.html
Poincaré, H.: Analysis situs. J. École Polytech. 1(2), 1–123 (1895)
Riemann, B.: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen (1851)
Riemann, B.: Theorie der Abel’schen functionen. J. Reine Angew. Math. 54, 101–155 (1857)
Scholze, P.: p-adic Hodge theory for rigid analytic varieties. In: Forum of Mathematics, Pi, vol. 1 (2013)
Serre, J.-P.: Corps locaux, Publ. de l’Univ. de Nancago, VIII, Hermann, Paris (1962)
Serre, J.-P.: Exemples de variétés projectives conjuguées non homéomorphes. Ann. Inst. Fourier 6, 20–50 (1955)
Szamuely, T.: Galois Groups and Fundamental Groups. Cambridge Studies in Advanced Mathematics, vol. 117, p. 270 (2009)
Tsuzuki, N.: Morphism of \(F\)-isocrystals and the finite monodromy theorem for unit-root \(F\)-isocrystals. Duke Math. J. 111, 385–419 (2002)
Wiesend, G.: A construction of covers of arithmetic schemes. J. Number. Theory 121(1), 131–181 (2006)
Wiesend, G.: Tamely ramified covers of varieties and arithmetic schemes. Forum Math. 20(3), 515–522 (2008)
Acknowledgements
It is a pleasure to thank Jakob Stix for a discussion on separable base points reflected in Sect. 3. We thank Tomoyuki Abe and Atsushi Shiho for discussions. We thank the public of the Santaló lectures at the Universidad Complutense de Madrid (October 2015) and the Rademacher lectures at the University of Pennsylvania (February 2016), where some points discussed in those notes were presented. In particular, we thank Ching-Li Chai for an enlightening discussion on compatible systems. We thank Moritz Kerz for discussions we had when we tried to understand Deligne’s program in Weil II while writing [11]. We thank the two referees for their friendly and thorough reports which helped us to improve the initial version of these notes.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the Einstein program.
Rights and permissions
About this article
Cite this article
Esnault, H. Survey on some aspects of Lefschetz theorems in algebraic geometry. Rev Mat Complut 30, 217–232 (2017). https://doi.org/10.1007/s13163-017-0223-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-017-0223-8