Skip to main content
Log in

On the essential bounded Riesz \(\Phi \)-variation

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In Nakamura and Hashimoto (Collect Math 65(3):407–416, 2014), the authors showed that for every \(f\in L^{1}_{\mathrm{loc}}({\mathbb {R}})\), the essential p-variation \(\mathrm{ess}\, V_p(f,{\mathbb {R}})\) of f is given by

$$\begin{aligned} \lim _{h\rightarrow 0}\int _{{\mathbb {R}}}\left| \frac{f(x+h)-f(x)}{h}\right| ^{p}\, dx. \end{aligned}$$

In this paper, more generally we treat the following convergence for a function \(f\in L^{1}_{\mathrm{loc}}({\mathbb {R}})\) and a convex function \({\Phi }:{\mathbb {R}}\rightarrow [0,\infty )\);

$$\begin{aligned} \lim _{h\rightarrow 0}\int _{{\mathbb {R}}}{\Phi }\left( \frac{f(t+h)-f(t)}{h}\right) \, dt, \end{aligned}$$

and we show that the limit is equivalent to an essential \({\Phi }\)-variation \(\text{ ess } V_{{\Phi }}(f)\). Moreover, we obtain a characterization of the class of functions f with \(\text{ ess } V_{{\Phi }}(f)<\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Appell, J., Banaś, J., Merentes, N.: Bounded Variation and Around, De Gruyter Series in Nonlinear Analysis and Applications, 17. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  2. Leoni, G.: A first course in Sobolev spaces, Graduate Studies in Mathematics, vol. 105. American Mathematical Society, Providence, RI (2009)

  3. Medvedev, Y.T.: Generalization of a theorem of F. Riesz. Uspekhi Mat. Nauk. 8(6), 115–118 (1953). (Russian)

    MathSciNet  MATH  Google Scholar 

  4. Nakamura, G., Hashimoto, K.: On the linearity of some sets of sequences defined by \(L^p\)-functions and \(L_1\)-functions determining \(\ell _{1}\). Proc. Japan Acad. Ser. A Math Sci, 87, 77–82 (2011)

  5. Nakamura, G., Hashimoto, K.: On the essential bounded variation of \(L^p(\mathbb{R}, X)\)-functions. Collect. Math. 65(3), 407–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Riesz, F.: Untersuchungen über Systeme integrierbarer Funktionen. Math. Ann. 69(4), 449–497 (1910)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, G., Hashimoto, K. On the essential bounded Riesz \(\Phi \)-variation. Rev Mat Complut 30, 393–416 (2017). https://doi.org/10.1007/s13163-017-0222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-017-0222-9

Keywords

Mathematics Subject Classification

Navigation