On the essential bounded Riesz \(\Phi \)-variation


In Nakamura and Hashimoto (Collect Math 65(3):407–416, 2014), the authors showed that for every \(f\in L^{1}_{\mathrm{loc}}({\mathbb {R}})\), the essential p-variation \(\mathrm{ess}\, V_p(f,{\mathbb {R}})\) of f is given by

$$\begin{aligned} \lim _{h\rightarrow 0}\int _{{\mathbb {R}}}\left| \frac{f(x+h)-f(x)}{h}\right| ^{p}\, dx. \end{aligned}$$

In this paper, more generally we treat the following convergence for a function \(f\in L^{1}_{\mathrm{loc}}({\mathbb {R}})\) and a convex function \({\Phi }:{\mathbb {R}}\rightarrow [0,\infty )\);

$$\begin{aligned} \lim _{h\rightarrow 0}\int _{{\mathbb {R}}}{\Phi }\left( \frac{f(t+h)-f(t)}{h}\right) \, dt, \end{aligned}$$

and we show that the limit is equivalent to an essential \({\Phi }\)-variation \(\text{ ess } V_{{\Phi }}(f)\). Moreover, we obtain a characterization of the class of functions f with \(\text{ ess } V_{{\Phi }}(f)<\infty \).

This is a preview of subscription content, log in to check access.


  1. 1.

    Appell, J., Banaś, J., Merentes, N.: Bounded Variation and Around, De Gruyter Series in Nonlinear Analysis and Applications, 17. De Gruyter, Berlin (2014)

    Google Scholar 

  2. 2.

    Leoni, G.: A first course in Sobolev spaces, Graduate Studies in Mathematics, vol. 105. American Mathematical Society, Providence, RI (2009)

  3. 3.

    Medvedev, Y.T.: Generalization of a theorem of F. Riesz. Uspekhi Mat. Nauk. 8(6), 115–118 (1953). (Russian)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Nakamura, G., Hashimoto, K.: On the linearity of some sets of sequences defined by \(L^p\)-functions and \(L_1\)-functions determining \(\ell _{1}\). Proc. Japan Acad. Ser. A Math Sci, 87, 77–82 (2011)

  5. 5.

    Nakamura, G., Hashimoto, K.: On the essential bounded variation of \(L^p(\mathbb{R}, X)\)-functions. Collect. Math. 65(3), 407–416 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Riesz, F.: Untersuchungen über Systeme integrierbarer Funktionen. Math. Ann. 69(4), 449–497 (1910)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kazuo Hashimoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakamura, G., Hashimoto, K. On the essential bounded Riesz \(\Phi \)-variation. Rev Mat Complut 30, 393–416 (2017). https://doi.org/10.1007/s13163-017-0222-9

Download citation


  • Bounded variation
  • Essential bounded variation
  • Convexity
  • Sobolev space

Mathematics Subject Classification

  • Primary 26A45
  • Secondary 46E35