Revista Matemática Complutense

, Volume 30, Issue 2, pp 417–426 | Cite as

Nice operators into \(L_1\)-preduals

  • Ana M. Cabrera-Serrano
  • Juan F. Mena-JuradoEmail author


A Banach space X is said to be “nice” if every extreme operator from any Banach space into X is a nice operator (that is, its adjoint preserves extreme points). We prove that a nice \(L_1\)-predual space is isometrically isomorphic to \(c_0(I)\) for some set I. In fact, by using the structure topology, we get a more general result which allows us to conclude that there exist extreme non-nice operators into certain spaces of continuous affine functions which are not \(L_1\)-preduals.


Extreme operator Nice operator \(L_1\)-predual Structure topology 

Mathematics Subject Classification

46B20 46B04 



Thanks are due to the referees for several useful suggestions and remarks that improved the final version of the paper.


  1. 1.
    Al-Halees, H., Fleming, R.J.: Extreme points methods and Banach–Stone theorems. J. Aust. Math. Soc. 75, 125–143 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Al-Halees, H., Fleming, R.J.: Extreme contractions on continuous vector-valued function spaces. Proc. Am. Math. Soc. 134, 2661–2666 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, New York (1971)CrossRefzbMATHGoogle Scholar
  4. 4.
    Alfsen, E.M., Effros, E.G.: Structure in real Banach spaces. II. Ann. Math. 96, 129–173 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Asimow, L., Ellis, A.J.: Convexity Theory and its Applications in Funtional Analysis. Academic Press, London (1980)zbMATHGoogle Scholar
  6. 6.
    Brilloüet, N.: Extreme and nice operators. Southeast Asian Bull. Math. 9, 23–30 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cabrera-Serrano, A.M., Mena-Jurado, J.F.: Extreme operators whose adjoints preserve extreme points. J. Convex Anal. 22, 247–258 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cabrera-Serrano, A.M., Mena-Jurado, J.F.: Facial topology and extreme operators. J. Math. Anal. Appl. 427, 899–904 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cabrera-Serrano, A.M., Mena-Jurado, J. F.: Nice operators into \(G\)-spaces. Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-015-0155-8
  10. 10.
    Choy, S.T.L.: Extreme operators on function spaces. Ill. J. Math. 33, 301–309 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Effros, E.G.: Structure in simplexes. Acta Math. 117, 103–121 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Funtional Analysis and Infinite-Dimensional Geometry. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gleit, A.: On the construction of split-face topologies. Trans. Am. Math. Soc. 194, 291–299 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grothendieck, A.: Une caractérisation vectorielle-métrique des espaces \(L_1\). Can. J. Math. 7, 552–561 (1955)CrossRefzbMATHGoogle Scholar
  15. 15.
    Harmand, P., Werner, D., Werner, W.: M-Ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, vol 1547. Springer, Berlin (1993)Google Scholar
  16. 16.
    Khalil, R., Salih, A.: Extreme and nice operators on certain function spaces. Sci. Math. Japan 65, 423–430 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Labuschagne, L.E., Mascioni, V.: Linear maps between \(C^*\)-algebras whose adjoints preserve extreme points of the dual ball. Adv. Math. 138, 15–45 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lacey, H.E.: The Isometric Theory of Classical Banach Spaces. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lazar, A.J., Lindenstrauss, J.: Banach spaces whose duals are \(L_1\) spaces and their representing matrices. Acta Math. 126, 165–194 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lima, Å.: Intersection properties of balls and subspaces in Banach spaces. Trans. Am. Math. Soc. 227, 1–62 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lindenstrauss, J.: Extensions of compact operators. Mem. Am. Math. Soc. 48 (1964)Google Scholar
  22. 22.
    Mena-Jurado, J.F., Montiel-Aguilera, F.: A note on nice operators. J. Math. Anal. Appl. 289, 30–34 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mena-Jurado, J.F., Navarro-Pascual, J.C.: A note on extreme points in dual spaces. Acta Math. Sin. (Engl. Ser.) 29, 471–476 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Morris, P.D., Phelps, R.R.: Theorems of Krein–Milman type for certain convex sets of operators. Trans. Am. Math. Soc. 150, 183–200 (1970)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Navarro-Pascual, J.C., Navarro, M.A.: Unitary operators in real von Neumann algebras. J. Math. Anal. Appl. 386, 933–938 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Navarro-Pascual, J.C., Navarro, M.A.: Nice operators and surjective isometries. J. Math. Anal. Appl. 426, 1130–1142 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Navarro-Pascual, J.C., Navarro, M.A.: Differentiable functions and nice operators. Banach J. Math. Anal. 10, 96–107 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rao, T.S.S.R.K.: Nice surjections on spaces of operators. Proc. Indian Acad. Sci. Math. Sci. 116, 401–409 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2016

Authors and Affiliations

  1. 1.Departamento de Análisis Matemático, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations