Skip to main content

“Varopoulos paradigm”: Mackey property versus metrizability in topological groups

Abstract

The class of all locally quasi-convex (lqc) abelian groups contains all locally convex vector spaces (lcs) considered as topological groups. Therefore it is natural to extend classical properties of locally convex spaces to this larger class of abelian topological groups. In the present paper we consider the following well known property of lcs: “A metrizable locally convex space carries its Mackey topology ”. This claim cannot be extended to lqc-groups in the natural way, as we have recently proved with other coauthors (Außenhofer and de la Barrera Mayoral in J Pure Appl Algebra 216(6):1340–1347, 2012; Díaz Nieto and Martín Peinador in Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, Vol 80 doi:10.1007/978-3-319-05224-3_7, 2014; Dikranjan et al. in Forum Math 26:723–757, 2014). We say that an abelian group G satisfies the Varopoulos paradigm (VP) if any metrizable locally quasi-convex topology on G is the Mackey topology. In the present paper we prove that in any unbounded group there exists a lqc metrizable topology that is not Mackey. This statement (Theorem C) allows us to show that the class of groups satisfying VP coincides with the class of finite exponent groups. Thus, a property of topological nature characterizes an algebraic feature of abelian groups.

This is a preview of subscription content, access via your institution.

References

  1. Außenhofer, L., de la Barrera Mayoral, D.: Linear topologies on \(\cal {Z}\) are not Mackey topologies. J. Pure Appl. Algebra 216(6), 1340–1347 (2012)

  2. Außenhofer, L., Dikranjan, D.: The Mackey topology problem: a complete solution for bounded groups Topology Appl. 2016

  3. Außenhofer, L., Dikranjan, D., Martín-Peinador, E.: Locally quasi-convex compatible topologies on a topological group. Axioms 4, 436–458 (2015). doi:10.3390/axioms4040436

    Article  Google Scholar 

  4. Außenhofer, L., Gabriyelyan, S.S.: On reflexive group topologies on abelian groups of finite exponent. Arch. Math. (Basel) 99(6), 583–588 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banaszczyk, W.: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics, vol. 1466. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

  6. Banaszczyk, W., Chasco, M.J., Martín-Peinador, E.: Open subgroups and Pontryagin duality. Math. Z. 215, 195–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barr, M., Kleisli, H.: On Mackey topologies in topological abelian groups. Theory Appl. Categories 8(4), 54–62 (2001)

    MathSciNet  MATH  Google Scholar 

  8. de la Barrera Mayoral, D.: \(\cal {Q}\) is not Mackey group. Top. Appl. 178, 265–275 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berhanu, S., Comfort, W., Reid, J.: Counting subgroups and topological group topologies. Pac. J. Math. 116(2), 217–241 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonales, F.G., Trigos-Arrieta, F.J., Vera Mendoza, R.: A Mackey-Arens theorem for topological abelian groups. Bol. Soc. Mat. Mexicana. (3) 9(1), 79–88 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Chasco, M.J., Martín-Peinador, E., Tarieladze, V.: On Mackey Topology for groups. Stud. Math. 132(3), 257–284 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Comfort, W.W., Dikranjan, D.: On the poset of totally dense subgroups of compact groups. Topol. Proc. 24, 103–128 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Comfort, W.W., Dikranjan, D.: Dense nucleus of compact abelian groups. Topol. Proc. 44, 325–356 (2014)

    MATH  Google Scholar 

  14. de Leo, L.: Weak and strong topologies in topological abelian groups, PhD Thesis, Universidad Complutense de Madrid (2008)

  15. de Leo, L., Dikranjan, D., Martín-Peinador, E., Tarieladze, V.: Duality theory for groups revisited: g-barrelled. Mackey and Arens groups (2008) (Preprint)

  16. Díaz Nieto, J. M., Martín Peinador, E.: Characteristics of the Mackey topology for abelian topological groups. In: Ferrando, J.C., López-Pellicer, M. (eds.), Descriptive Topology and Functional Analysis. Vol. 80, Springer Proceedings in Mathematics and Statistics. 117–141 (2014). doi:10.1007/978-3-319-05224-3_7

  17. Dikranjan, D.: On the poset of precompact group topologies. In: Czászár, Á. (ed.) Topology with Applications, Proceedings of the 1993 Szekszàrd (Hungary) Conference, Bolyai Society Mathematical Studies, pp. 135–149. Elsevier, Amsterdam (1995)

    Google Scholar 

  18. Dikranjan, D.: Chains of pseudocompact group topologies. J. Pure Appl. Algebra 124, 65–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dikranjan, D.: The lattice of group topologies and compact representations, nuclear groups and Lie groups. In: Current Result and Problems, Proc. Workshop on Lie groups and topological groups, (pp. 105–126). Univ. Complutense, Madrid (1999)

  20. Dikranjan, D., Giordano Bruno, A.: Functorial topologies and finite-index subgroups of abelian groups. Topol. Appl. 158(17), 2391–2407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dikranjan, D., Martín-Peinador, E., Tarieladze, V.: A class of metrizable locally quasi-convex groups which are not Mackey. Forum Math. 26, 723–757 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dikranjan, D., Prodanov, Iv, Stoyanov, L.: Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, vol. 130, pp. 287+x. Marcel Dekker Inc., New York-Basel (1989)

  23. van Douwen, E.K.: The maximal totally bounded group topology on G and the biggest minimal G-space, for abelian groups G. Topol. Appl. 34, 69–91 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Flor, P.: Zur Bohr-Konvergenz von Folgen. Math. Scand. 23, 169–170 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fuchs, L.: Infinite Abelian groups, vol. I. Academic Press, New York (1973)

    MATH  Google Scholar 

  26. Gabriyelyan, S.S.: Groups of quasi-invariance and the Pontryagin duality. Topol. Appl. 157, 2786–2802 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Glicksberg, I.: Uniform boundedness for groups. Can. J. Math. 14, 269–276 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kelley, J.L., Namioka, I.: Linear topological spaces. Springer, Berlin Heidelberg (1963)

    Book  MATH  Google Scholar 

  29. Mackey, G.W.: On convex topological linear spaces. Trans. Am. Math. Soc. 60, 519–537 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  30. Martín-Peinador, E., Tarieladze, V.: Mackey Topology on locally convex spaces and on locally quasi-convex groups. Similarities and historical remarks. RACSAM Rev. R. Acad. A 110(2), 667–669 (2016). doi:10.1007/s13398-015-0256-0

    MATH  Google Scholar 

  31. Remus, D.: On the structure of the lattice of group topologies, Doctoral Dissertation, Hannover University (Federal Republic of Germany) (1983)

  32. Varopoulos, N.: Studies in harmonic analysis. Proc. Camb. Philos. Soc. 60, 465–516 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vilenkin, N.Ya.: The theory of characters of topological Abelian groups with boundedness given. Izvestiya Akad. Nauk SSSR. Ser. Mat. 15, 439–462 (1951)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the referee for his careful reading of our paper. His observations have contributed to improve and clarify some points in our previous version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Martín-Peinador.

Additional information

This paper is dedicated to George Mackey on the centenary of his birth (1916-2006)

The third named author was supported by the grant “Progetti di Eccellenza 2011/12” of Fondazione CARIPARO.

The second and the fourth named authors were partially supported by Ministerio de Economía y Competitividad grant: MTM2013-42486-P and MTM2016-79422-P.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Außenhofer, L., de la Barrera Mayoral, D., Dikranjan, D. et al. “Varopoulos paradigm”: Mackey property versus metrizability in topological groups. Rev Mat Complut 30, 167–184 (2017). https://doi.org/10.1007/s13163-016-0209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-016-0209-y

Keywords

Mathematics Subject Classification