Abstract
The class of all locally quasi-convex (lqc) abelian groups contains all locally convex vector spaces (lcs) considered as topological groups. Therefore it is natural to extend classical properties of locally convex spaces to this larger class of abelian topological groups. In the present paper we consider the following well known property of lcs: “A metrizable locally convex space carries its Mackey topology ”. This claim cannot be extended to lqc-groups in the natural way, as we have recently proved with other coauthors (Außenhofer and de la Barrera Mayoral in J Pure Appl Algebra 216(6):1340–1347, 2012; Díaz Nieto and Martín Peinador in Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, Vol 80 doi:10.1007/978-3-319-05224-3_7, 2014; Dikranjan et al. in Forum Math 26:723–757, 2014). We say that an abelian group G satisfies the Varopoulos paradigm (VP) if any metrizable locally quasi-convex topology on G is the Mackey topology. In the present paper we prove that in any unbounded group there exists a lqc metrizable topology that is not Mackey. This statement (Theorem C) allows us to show that the class of groups satisfying VP coincides with the class of finite exponent groups. Thus, a property of topological nature characterizes an algebraic feature of abelian groups.
This is a preview of subscription content, access via your institution.
References
Außenhofer, L., de la Barrera Mayoral, D.: Linear topologies on \(\cal {Z}\) are not Mackey topologies. J. Pure Appl. Algebra 216(6), 1340–1347 (2012)
Außenhofer, L., Dikranjan, D.: The Mackey topology problem: a complete solution for bounded groups Topology Appl. 2016
Außenhofer, L., Dikranjan, D., Martín-Peinador, E.: Locally quasi-convex compatible topologies on a topological group. Axioms 4, 436–458 (2015). doi:10.3390/axioms4040436
Außenhofer, L., Gabriyelyan, S.S.: On reflexive group topologies on abelian groups of finite exponent. Arch. Math. (Basel) 99(6), 583–588 (2012)
Banaszczyk, W.: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics, vol. 1466. Springer-Verlag, Berlin (1991)
Banaszczyk, W., Chasco, M.J., Martín-Peinador, E.: Open subgroups and Pontryagin duality. Math. Z. 215, 195–204 (1994)
Barr, M., Kleisli, H.: On Mackey topologies in topological abelian groups. Theory Appl. Categories 8(4), 54–62 (2001)
de la Barrera Mayoral, D.: \(\cal {Q}\) is not Mackey group. Top. Appl. 178, 265–275 (2014)
Berhanu, S., Comfort, W., Reid, J.: Counting subgroups and topological group topologies. Pac. J. Math. 116(2), 217–241 (1985)
Bonales, F.G., Trigos-Arrieta, F.J., Vera Mendoza, R.: A Mackey-Arens theorem for topological abelian groups. Bol. Soc. Mat. Mexicana. (3) 9(1), 79–88 (2003)
Chasco, M.J., Martín-Peinador, E., Tarieladze, V.: On Mackey Topology for groups. Stud. Math. 132(3), 257–284 (1999)
Comfort, W.W., Dikranjan, D.: On the poset of totally dense subgroups of compact groups. Topol. Proc. 24, 103–128 (1999)
Comfort, W.W., Dikranjan, D.: Dense nucleus of compact abelian groups. Topol. Proc. 44, 325–356 (2014)
de Leo, L.: Weak and strong topologies in topological abelian groups, PhD Thesis, Universidad Complutense de Madrid (2008)
de Leo, L., Dikranjan, D., Martín-Peinador, E., Tarieladze, V.: Duality theory for groups revisited: g-barrelled. Mackey and Arens groups (2008) (Preprint)
Díaz Nieto, J. M., Martín Peinador, E.: Characteristics of the Mackey topology for abelian topological groups. In: Ferrando, J.C., López-Pellicer, M. (eds.), Descriptive Topology and Functional Analysis. Vol. 80, Springer Proceedings in Mathematics and Statistics. 117–141 (2014). doi:10.1007/978-3-319-05224-3_7
Dikranjan, D.: On the poset of precompact group topologies. In: Czászár, Á. (ed.) Topology with Applications, Proceedings of the 1993 Szekszàrd (Hungary) Conference, Bolyai Society Mathematical Studies, pp. 135–149. Elsevier, Amsterdam (1995)
Dikranjan, D.: Chains of pseudocompact group topologies. J. Pure Appl. Algebra 124, 65–100 (1998)
Dikranjan, D.: The lattice of group topologies and compact representations, nuclear groups and Lie groups. In: Current Result and Problems, Proc. Workshop on Lie groups and topological groups, (pp. 105–126). Univ. Complutense, Madrid (1999)
Dikranjan, D., Giordano Bruno, A.: Functorial topologies and finite-index subgroups of abelian groups. Topol. Appl. 158(17), 2391–2407 (2011)
Dikranjan, D., Martín-Peinador, E., Tarieladze, V.: A class of metrizable locally quasi-convex groups which are not Mackey. Forum Math. 26, 723–757 (2014)
Dikranjan, D., Prodanov, Iv, Stoyanov, L.: Topological Groups: Characters, Dualities and Minimal Group Topologies, Pure and Applied Mathematics, vol. 130, pp. 287+x. Marcel Dekker Inc., New York-Basel (1989)
van Douwen, E.K.: The maximal totally bounded group topology on G and the biggest minimal G-space, for abelian groups G. Topol. Appl. 34, 69–91 (1990)
Flor, P.: Zur Bohr-Konvergenz von Folgen. Math. Scand. 23, 169–170 (1968)
Fuchs, L.: Infinite Abelian groups, vol. I. Academic Press, New York (1973)
Gabriyelyan, S.S.: Groups of quasi-invariance and the Pontryagin duality. Topol. Appl. 157, 2786–2802 (2010)
Glicksberg, I.: Uniform boundedness for groups. Can. J. Math. 14, 269–276 (1962)
Kelley, J.L., Namioka, I.: Linear topological spaces. Springer, Berlin Heidelberg (1963)
Mackey, G.W.: On convex topological linear spaces. Trans. Am. Math. Soc. 60, 519–537 (1946)
Martín-Peinador, E., Tarieladze, V.: Mackey Topology on locally convex spaces and on locally quasi-convex groups. Similarities and historical remarks. RACSAM Rev. R. Acad. A 110(2), 667–669 (2016). doi:10.1007/s13398-015-0256-0
Remus, D.: On the structure of the lattice of group topologies, Doctoral Dissertation, Hannover University (Federal Republic of Germany) (1983)
Varopoulos, N.: Studies in harmonic analysis. Proc. Camb. Philos. Soc. 60, 465–516 (1964)
Vilenkin, N.Ya.: The theory of characters of topological Abelian groups with boundedness given. Izvestiya Akad. Nauk SSSR. Ser. Mat. 15, 439–462 (1951)
Acknowledgments
The authors sincerely thank the referee for his careful reading of our paper. His observations have contributed to improve and clarify some points in our previous version.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is dedicated to George Mackey on the centenary of his birth (1916-2006)
The third named author was supported by the grant “Progetti di Eccellenza 2011/12” of Fondazione CARIPARO.
The second and the fourth named authors were partially supported by Ministerio de Economía y Competitividad grant: MTM2013-42486-P and MTM2016-79422-P.
Rights and permissions
About this article
Cite this article
Außenhofer, L., de la Barrera Mayoral, D., Dikranjan, D. et al. “Varopoulos paradigm”: Mackey property versus metrizability in topological groups. Rev Mat Complut 30, 167–184 (2017). https://doi.org/10.1007/s13163-016-0209-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-016-0209-y
Keywords
- Metrizable abelian groups
- Locally quasi-convex topologies
- Torsion groups
- Precompact topologies
- Locally convex spaces
- Mackey topology