Revista Matemática Complutense

, Volume 29, Issue 2, pp 295–340 | Cite as

Interpolation of generalized Morrey spaces

  • Denny Ivanal HakimEmail author
  • Yoshihiro Sawano


In this paper, we shall establish a theory of interpolation of generalized Morrey spaces. We use the complex interpolation methods. Our results extend the interpolation results for Morrey spaces which are discussed by Lu et al. (Can Math Bull 57:598–608, 2014), and also Lemarié-Rieusset (2014). We establish the interpolation of generalized weak Morrey spaces, generalized Orlicz–Morrey spaces and generalized weak Orlicz–Morrey spaces. We also consider the closure of the functions which are essentially bounded and have compact support. The second interpolation of such spaces will yield a class of closed spaces; we describe the second interpolation of the closure of the functions which are essentially bounded and have compact support. This result will carry over to generalized Morrey spaces, generalized weak Morrey spaces, generalized Orlicz–Morrey spaces and generalized weak Orlicz–Morrey spaces. We also give several examples that explain the subtlety of proving the interpolation of Morrey spaces.


Morrey spaces Orlicz–Morrey spaces Complex interpolation functors 

Mathematics Subject Classification

46B70 42B35 46B26 



The authors are thankful to Professor Wen Yuan for the discussion with the second author. The authors are also grateful to Dr. Shohei Nakamura for his pointing out our mistake in the assumptions in Lemmas 8 and 16.


  1. 1.
    Bennett, C., Sharpley, R.C.: Interpolation of Operators, vol. 129. Academic press, New York (1988)zbMATHGoogle Scholar
  2. 2.
    Bergh, J.: Relation between the 2 complex methods of interpolation. Indiana Univ. Math. J. 28(5), 775–778 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergh, J., Löfström, J.: Interpolation spaces. An introduction. In: Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)Google Scholar
  4. 4.
    Blasco, O., Ruiz, A., Vega, L.: Non-interpolation in Morrey–Campanato and block spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 31–40 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Burenkov, V.I., Nursultanov, E.D.: Description of interpolation spaces for local Morrey-type spaces. Tr. Mat. Inst. Steklova Teoriya Funktsii i Differentsialnye Uravneniya 269, 52–62 (2010). (Russian) [Translation in Proc. Steklov Inst. Math. 269 (2010)]Google Scholar
  6. 6.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 14(1), 113–190, 46–56 (1964)Google Scholar
  7. 7.
    Cobos, F., Peetre, J., Persson, L.E.: On the connection between real and complex interpolation of quasi-Banach spaces. Bull. Sci. Math. 122, 17–37 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cwikel, M.: Lecture notes on duality and interpolation spaces. arXiv:0803.3558v2
  9. 9.
    Evans, C., Gariepy, F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  10. 10.
    Gala, S., Sawano, Y., Tanaka, H.: A remark on two generalized Orlicz–Morrey spaces. J. Approx. Theory 198, 1–9 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grafakos, L.: Classical Fourier analysis. In: Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)Google Scholar
  12. 12.
    Iaffei, B.: Comparison of two weak versions of the Orlicz spaces. Rev. Un. Mat. Argent. 40(1), 191–202 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Jawerth, B., Torchinsky, A.: Local sharp maximal functions. J. Approx. Theory 43(3), 231–270 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. PDE 19, 959–1014 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lemarié-Rieusset, P.G.: Multipliers and Morrey spaces. Potential Anal. 38(3), 741–752 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lemarié-Rieusset, P. G.: Erratum to: multipliers and Morrey spaces. Potential Anal. 41, 1359–1362 (2014)Google Scholar
  17. 17.
    Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Diss. Math. (Rozpr. Mat.) 489, 114 (2013)Google Scholar
  18. 18.
    Lu, Y., Yang, D., Yuan, W.: Interpolation of Morrey spaces on metric measure spaces. Can. Math. Bull. 57, 598–608 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mazzucato, A.L.: Decomposition of Besov–Morrey spaces. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001). In: Contemp. Math., vol. 320, pp. 279–294. Am. Math. Soc., Providence (2003)Google Scholar
  20. 20.
    Mazzucato, A.L.: Besov–Morrey spaces : function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nakai, E.: A characterization of pointwise multipliers on the Morrey spaces, Sci. Math. 3, 445–454 (2000)Google Scholar
  22. 22.
    Nakai, E.: Generalized Fractional Integrals on Orlicz–Morrey Spaces, Banach and Function Spaces, pp. 323–333. Yokohama Publ, Yokohama (2004)Google Scholar
  23. 23.
    Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Stud. Math. 188(3), 193–221 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nakai, E., Sobukawa, T.: \(B_u^w\)-function spaces and their interpolation. Tokyo Math. J. (to appear)Google Scholar
  25. 25.
    Nilsson, P.: Interpolation of Banach lattices. Stud. Math. 82(2), 135–154 (1985)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nakamura, S., Noi, T., Sawano, Y.: Generalized Morrey spaces and trace operator. Sci. China Math. 59(2), 281–336 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. M. Dekker, New York (1991)zbMATHGoogle Scholar
  28. 28.
    Ruiz, A., Vega, L.: Corrigenda to unique continuation for Schrödinger operators with potential in Morrey spaces and a remark on interpolation of Morrey spaces. Publ. Mat. 39, 405–411 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257(4), 871–905 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr. 282(12), 1788–1810 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36, 517–556 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sawano, Y., Hakim, D.I., Gunawan, H.: Non-smooth atomic decomposition for generalized Orlicz–Morrey spaces. Math. Nachr. 288(14–15), 1741–1775 (2015)Google Scholar
  34. 34.
    Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations, Tracts in Mathematics, vol. 24. European Mathematical Society, Zurich (2015)Google Scholar
  36. 36.
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including \(Q\) spaces. Math. Z. 265, 451–480 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yang, D., Yuan, W.: Dual properties of Triebel–Lizorkin-type spaces and their applications. Z. Anal. Anwend. 30, 29–58 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singap.) 11(5), 1350021 (2013). (p. 45)Google Scholar
  40. 40.
    Yuan, W.: Complex interpolation for predual spaces of Morrey-type spaces. Taiwan. J. Math. 18(5), 1527–1548 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, 2010, pp. xi+281. Springer, Berlin (2010)Google Scholar
  42. 42.
    Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey–Campanato and related smoothness spaces. Sci. China Math. 58(9), 1835–1908 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Information SciencesTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations