Revista Matemática Complutense

, Volume 26, Issue 1, pp 1–32 | Cite as

Integral operators on Bσ-Morrey-Campanato spaces

  • Yasuo Komori-Furuya
  • Katsuo Matsuoka
  • Eiichi Nakai
  • Yoshihiro Sawano
Article

Abstract

We show the boundedness of the Hardy-Littlewood maximal operator, singular and fractional integral operators, and more general sublinear operators on Bσ-Morrey-Campanato spaces. These function spaces have been introduced recently to unify central Morrey spaces, λ-central mean oscillation spaces and usual Morrey-Campanato spaces. Using the Bσ-Morrey-Campanato spaces, we can study both local and global regularities of functions simultaneously, and unify a series of results on the boundedness of operators on several classical function spaces.

Keywords

Central Morrey space Central BMO space Morrey-Campanato space Maximal function Sublinear operator Singular integral operator Fractional integral operator 

Mathematics Subject Classification (2000)

42B35 46E35 46E30 26A33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alvarez, J., Guzmán-Partida, M., Lakey, J.: Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect. Math. 51, 1–47 (2000) MathSciNetMATHGoogle Scholar
  3. 3.
    Beurling, A.: Construction and analysis of some convolution algebra. Ann. Inst. Fourier 14, 1–32 (1964) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Calderon, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen, Y., Lau, K.: Some new classes of Hardy spaces. J. Funct. Anal. 84, 255–278 (1989) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. 7(3–4), 273–279 (1987) MathSciNetMATHGoogle Scholar
  7. 7.
    Ding, Y., Yang, D., Zhow, Z.: Boundedness of sublinear operators and commutators on L p,w. Yokohama Math. J. 46, 15–26 (1998). http://hdl.handle.net/10131/5692 MathSciNetMATHGoogle Scholar
  8. 8.
    Feichtinger, H.: An elementary approach to Wiener’s third Tauberian theorem on Euclidean n-space. In: Proceedings of Conference at Cortona 1984. Symposia Mathematica, vol. 29, pp. 267–301. Academic Press, New York (1987) Google Scholar
  9. 9.
    Fu, Z., Lin, Y., Lu, S.: λ-central BMO estimates for commutators of singular integral operators with rough kernels. Acta Math. Sin. Engl. Ser. 24(3), 373–386 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    García-Cuerva, J.: Hardy spaces and Beurling algebras. J. Lond. Math. Soc. 39, 499–513 (1989) MATHCrossRefGoogle Scholar
  11. 11.
    García-Cuerva, J., Herrero, M.J.L.: A theory of Hardy spaces associated to the Herz spaces. Proc. Lond. Math. Soc. 69, 605–628 (1994) MATHCrossRefGoogle Scholar
  12. 12.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud., vol. 116. Amsterdam, Elsevier (1985) MATHCrossRefGoogle Scholar
  13. 13.
    Guliyev, V.S., Aliyev, S.S., Karaman, T., Shukurov, P.S.: Boundedness of sublinear operators and commutators on generalized Morrey spaces. Integral. Equ. Oper. Theory (2001). doi:10.1007/s00020-011-1904-1 Google Scholar
  14. 14.
    Herz, C.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18, 283–324 (1968) MathSciNetMATHGoogle Scholar
  15. 15.
    Hu, G., Lu, S., Yang, D.: The weak Herz spaces. J. Beijing Norm. Univ. Nat. Sci. 33, 27–34 (1997) MathSciNetMATHGoogle Scholar
  16. 16.
    Komori-Furuya, Y., Matsuoka, K.: Some weak-type estimates for singular integral operators on CMO spaces. Hokkaido Math. J. 39, 115–126 (2010) MathSciNetMATHGoogle Scholar
  17. 17.
    Komori-Furuya, Y., Matsuoka, K.: Strong and weak estimates for fractional integral operators on some Herz-type function spaces. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 82, 375–385 (2010) Google Scholar
  18. 18.
    Lu, G., Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups. Anal. Math. 28, 103–134 (2002) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lu, S., Yang, D.: The Littlewood-Paley function and ϕ-transform characterizations of a new Hardy space HK 2 associated with the Herz space. Stud. Math. 101(3), 285–298 (1992) MathSciNetMATHGoogle Scholar
  20. 20.
    Lu, S., Yang, D.: The central BMO spaces and Littlewood-Paley operators. J. Approx. Theory Appl. 11, 72–94 (1995) MathSciNetMATHGoogle Scholar
  21. 21.
    Matsuoka, K.: On some weighted Herz spaces and the Hardy-Littlewood maximal operator. In: Banach and function spaces II, pp. 375–384. Yokohama Publishers, Yokohama (2008) Google Scholar
  22. 22.
    Matsuoka, K., Nakai, E.: Fractional integral operators on B p,λ with Morrey-Campanato norms. In: Function Spaces IX. Banach Center Publ., vol. 92, pp. 249–264. Polish Acad. Sci. Inst. Math., Warsaw (2011) Google Scholar
  23. 23.
    Meyers, N.G.: Mean oscillation over cubes and Hölder continuity. Proc. Am. Math. Soc. 15, 717–721 (1964) MathSciNetMATHGoogle Scholar
  24. 24.
    Mizuhara, T.: Relations between Morrey and Campanato spaces with some growth functions, II. In: Proceedings of Harmonic Analysis Seminar 11, pp. 67–74 (1995) (in Japanese) Google Scholar
  25. 25.
    Muckenhoupt, B.: On certain singular integrals. Pac. J. Math. 10, 239–261 (1960) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Nakai, E.: Pointwise multipliers on the Morrey spaces. Mem. Osaka Kyoiku Univ. III Nat. Sci. Appl. Sci. 46(1), 1–11 (1997). http://ir.lib.osaka-kyoiku.ac.jp/dspace/handle/123456789/3224 MathSciNetGoogle Scholar
  28. 28.
    Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 176(1), 1–19 (2006) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Nakai, E.: Singular and fractional integral operators on Campanato spaces with variable growth conditions. Rev. Mat. Complut. 23(2), 355–381 (2010) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Peetre, J.: On convolution operators leaving L p,λ spaces invariant. Ann. Math. Pures Appl. 72, 295–304 (1966) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Peetre, J.: On the theory of \(\mathcal{L}_{p,\lambda}\) spaces. J. Funct. Anal. 4, 71–87 (1969) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Sawano, Y.: l q-valued extension of the fractional maximal operators for non-doubling measures via potential operators. Int. J. Pure Appl. Math. 26(4), 505–523 (2006) MathSciNetMATHGoogle Scholar
  33. 33.
    Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin. 21(6), 1535–1544 (2005) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Soria, F., Weiss, G.: A remark on singular integrals and power weights. Indiana Univ. Math. J. 43, 187–204 (1994) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Spanne, S.: Some function spaces defined using the mean oscillation over cubes. Ann. Sc. Norm. Super. Pisa 19(3), 593–608 (1965) MathSciNetMATHGoogle Scholar
  36. 36.
    Tang, L., Xu, J.: Some properties of Morrey type Besov-Triebel spaces. Math. Nachr. 278(7–8), 904–917 (2005) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Wiener, N.: Generalized harmonic analysis. Acta Math. 55, 117–258 (1930) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Wiener, N.: Tauberian theorems. Ann. Math. 33, 1–100 (1932) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yabuta, K.: Generalizations of Calderón-Zygmund operators. Stud. Math. 82, 17–31 (1985) MathSciNetMATHGoogle Scholar

Copyright information

© Revista Matemática Complutense 2011

Authors and Affiliations

  • Yasuo Komori-Furuya
    • 1
  • Katsuo Matsuoka
    • 2
  • Eiichi Nakai
    • 3
  • Yoshihiro Sawano
    • 4
  1. 1.School of High Technology for Human WelfareTokai UniversityNumazuJapan
  2. 2.College of EconomicsNihon UniversityTokyoJapan
  3. 3.Department of MathematicsIbaraki UniversityMitoJapan
  4. 4.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations