Skip to main content

Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators


We prove sharp stability estimates for the variation of the eigenvalues of non-negative self-adjoint elliptic operators of arbitrary even order upon variation of the open sets on which they are defined. These estimates are expressed in terms of the Lebesgue measure of the symmetric difference of the open sets. Both Dirichlet and Neumann boundary conditions are considered.

This is a preview of subscription content, access via your institution.


  1. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119–147 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, New York (1965)

    MATH  Google Scholar 

  3. Barbatis, G., Burenkov, V., Lamberti, P.D.: Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya. II. Partial Differential Equations. International Mathematical Series, vol. 12, pp. 23–60. Springer/Tamara Rozhkovskaya Publisher, Berlin/Novosibirsk (2010)

    Google Scholar 

  4. Burenkov, V.I.: Sobolev Spaces on Domains. Teubner, Leipzig (1998)

    MATH  Google Scholar 

  5. Burenkov, V.I., Davies, E.B.: Spectral stability of the Neumann Laplacian. J. Differ. Equ. 186, 485–508 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burenkov, V.I., Lamberti, P.D.: Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators. J. Differ. Equ. 233, 345–379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burenkov, V.I., Lamberti, P.D.: Spectral stability of Dirichlet second order uniformly elliptic operators. J. Differ. Equ. 244, 1712–1740 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burenkov, V.I., Lamberti, P.D.: Spectral stability of higher order uniformly elliptic operators. In: Maz’ya, V. (ed.) Sobolev Spaces in Mathematics II. Applications in Analysis and Partial Differential Equations (to the Centenary of Sergey Sobolev). International Mathematical Series, vol. 9. Springer, New York (2009)

    Google Scholar 

  9. Burenkov, V.I., Lamberti, P.D., Lanza de Cristoforis, M. : Spectral stability of nonnegative selfadjoint operators. Sovrem. Probl. Mat. Fundam. Napravl. 15, 76–111 (2006) (in Russian. English transl. in J. Math. Sci. (N.Y.) 149, 1417–1452 (2008))

    Google Scholar 

  10. Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson et Cie, Paris (1967)

    MATH  Google Scholar 

  11. Prikazhchikov, V.G., Klunnik, A.A.: Estimates for eigenvalues of a biharmonic operator perturbed by the variation of a domain. J. Math. Sci. (N.Y.) 84, 1298–1303 (1997)

    Article  MathSciNet  Google Scholar 

  12. Olver, F.W.J.: Bessel functions of integer order. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, pp. 355–433. Dover, New York (1965)

    Google Scholar 

  13. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pier Domenico Lamberti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burenkov, V.I., Lamberti, P.D. Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators. Rev Mat Complut 25, 435–457 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification (2000)