Abstract
We prove sharp stability estimates for the variation of the eigenvalues of non-negative self-adjoint elliptic operators of arbitrary even order upon variation of the open sets on which they are defined. These estimates are expressed in terms of the Lebesgue measure of the symmetric difference of the open sets. Both Dirichlet and Neumann boundary conditions are considered.
This is a preview of subscription content, access via your institution.
References
Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119–147 (1962)
Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, New York (1965)
Barbatis, G., Burenkov, V., Lamberti, P.D.: Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya. II. Partial Differential Equations. International Mathematical Series, vol. 12, pp. 23–60. Springer/Tamara Rozhkovskaya Publisher, Berlin/Novosibirsk (2010)
Burenkov, V.I.: Sobolev Spaces on Domains. Teubner, Leipzig (1998)
Burenkov, V.I., Davies, E.B.: Spectral stability of the Neumann Laplacian. J. Differ. Equ. 186, 485–508 (2002)
Burenkov, V.I., Lamberti, P.D.: Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators. J. Differ. Equ. 233, 345–379 (2007)
Burenkov, V.I., Lamberti, P.D.: Spectral stability of Dirichlet second order uniformly elliptic operators. J. Differ. Equ. 244, 1712–1740 (2008)
Burenkov, V.I., Lamberti, P.D.: Spectral stability of higher order uniformly elliptic operators. In: Maz’ya, V. (ed.) Sobolev Spaces in Mathematics II. Applications in Analysis and Partial Differential Equations (to the Centenary of Sergey Sobolev). International Mathematical Series, vol. 9. Springer, New York (2009)
Burenkov, V.I., Lamberti, P.D., Lanza de Cristoforis, M. : Spectral stability of nonnegative selfadjoint operators. Sovrem. Probl. Mat. Fundam. Napravl. 15, 76–111 (2006) (in Russian. English transl. in J. Math. Sci. (N.Y.) 149, 1417–1452 (2008))
Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson et Cie, Paris (1967)
Prikazhchikov, V.G., Klunnik, A.A.: Estimates for eigenvalues of a biharmonic operator perturbed by the variation of a domain. J. Math. Sci. (N.Y.) 84, 1298–1303 (1997)
Olver, F.W.J.: Bessel functions of integer order. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, pp. 355–433. Dover, New York (1965)
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1966)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Burenkov, V.I., Lamberti, P.D. Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators. Rev Mat Complut 25, 435–457 (2012). https://doi.org/10.1007/s13163-011-0079-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-011-0079-2
Keywords
- Elliptic equations
- Dirichlet and Neumann boundary conditions
- Stability of eigenvalues
- Sharp estimates
- Domain perturbation