Abstract
We study the Hardy type, two-weight inequality for the multidimensional Hardy operator in the variable exponent Lebesgue space L p(.)(ℝn). We prove equivalent conditions for L p(.)→L q(.) boundness of the Hardy operator in the case of so called “mixed” exponents: q(0)≥p(0), q(∞)<p(∞) or q(0)<p(0), q(∞)≥p(∞). We show that a necessary and sufficient condition for such an inequality to hold coincides with conditions for the validity of two weight Hardy inequalities with constant exponents, provided that the exponents are regular at zero and at infinity.
Similar content being viewed by others
References
Acerbi, E., Mingione, G.: Regularity results for a class of functional with nonstandard growth. Arch. Ration. Mech. Anal. 156(2), 121–140 (2001)
Aguilar Canestro, M.I., Ortega Salvador, P.: Weighted weak type inequalities with variable exponents for Hardy and maximal operators. Proc. Jpn. Acad. Ser. A 82, 126–130 (2006)
Alkhutov, Y.A.: On the Holder continuity of p(x)-harmonic functions. Sb. Math. 196(2), 147–171 (2005); translations from Mat. Sb. 196(2), 3–28 (2005) (Russian, English)
Boza, S., Soria, J.: Weighted Hardy modular inequalities in variable spaces. J. Math. Anal. Appl. 348(1), 383–388 (2008)
Bradley, J.S.: Hardy inequalities with mixed norms. Can. Math. Bull. 21(4), 405–408 (1978)
Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable L p(.) spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 28, 223–238 (2003)
Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable L p(.) spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 31, 239–264 (2006)
Cruz-Uribe, D.: A new proof of the two weight norm inequality for the one sided fractional maximal operator. Proc. Am. Math. Soc. 125(5), 1419–1424 (1997)
Cruz-Uribe, D.: New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J. 7(1), 33–42 (2000)
Diening, L., Samko, S.: Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal. 10(1), 1–17 (2007)
Diening, L.: Maximal function on generalized Lebesgue spaces L p(.). Math. Inequal. Appl. 7(2), 245–253 (2004)
Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(.) and W k,p(.). Math. Nachr. 268, 31–43 (2004)
Diening, L., Ruzicka, M.: Calderon-Zigmund operators on generalized Lebesgue spaces Lp(.) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197–220 (2003)
Diening, L., Hasto, P., Nekvinda, A.: Open problems in variable exponent Lebesgue and Sobolev spaces. In: Drabek, P., Rakosnik, J. (eds.) FSDONA 04 Proceedings, Milovy, Czech Republic, pp. 38–58. Academy of Sciences of the Czech Republic, Prague (2005).
Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)
Edmunds, D.E., Kokilashvili, V., Meskhi, A.: On the boundedness and compactness of the weighted Hardy operators in L p(.) spaces. Georgian Math. J. 12(1), 27–44 (2005)
Fan, X.-L., Zhao, D.: The quasi-minimizer of integral functionals with m(x) growth conditions. Nonlinear Anal., Theory Methods Appl. A 39(7), 807–816 (2000)
Fan, X.-L., Zhao, D.: A class of De Giorgi type and Holder continuity. Nonlinear Anal. Theory Methods Appl. A 36(3), 295–318 (1999)
Harjulehto, P., Hästö, P., Koskenoja, M.: Hardy’s inequality in variable exponent Sobolev spaces. Georgian Math. J. 12(3), 431–442 (2005)
Kovacik, O., Rakosnik, J.: On spaces L p(.) and W 1,p(.). Czechoslov. Math. J. 41(116), 592–618 (1991)
Kokilashvili, V., Samko, S.G.: Maximal and fractional operators in weighted L p(.) spaces. Rev. Mat. Iberoam. 20(2), 145–156 (2004)
Kokilashvili, V., Samko, S.G.: Singular integrals in weighted Lebesgue spaces with variable exponent. Georgian Math. J. 10(1), 145–156 (2003)
Kopaliani, T.: Boundedness of Hardy operator in Banach function spaces. Bull. Ga. Acad. Sci. 163(1), 27–28 (2001)
Kufner, A., Persson, L.E.: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003)
Kufner, A., Maligranda, L., Persson, L.E.: The Hardy Inequality. About Its History and Some Related Results. Vydavatelski Servis Publisher, Pilzen (2007)
Lerner, A.K.: On modular inequalities in variable L p(.) spaces. Arch. Math. 85, 538–543 (2005)
Mamedov, F.I., Harman, A.: On weighted inequality of Hardy type in L p(.). J. Math. Anal. Appl. 353(2), 521–530 (2009)
Mamedov, F.I., Harman, A.: On a Hardy type general weighted inequality in spaces L p(.). Integral Equ. Oper. Theory 66(4), 565–592 (2010)
Mamedov, F.I., Harman, A.: On boundedness of weighted Hardy operator in L p(.)(ℝn) and regularity condition. J. Inequal. Appl. 1, 837951 (2010), 14 pages
Mashiyev, R., Çekiç, B., Mamedov, F.I., Ogras, S.: Hardy’s inequality in power-type weighted L p(.)(0,∞). J. Math. Anal. Appl. 334(1), 289–298 (2007)
Mamedov, F.I., Zeren, Y.: On equivalent conditions for the general weighted Hardy type inequality in the space L p(.). Z. Anal. Ihre Anwend. (to appear)
Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)
Musielak, J.: Orlicz Spaces and Modular Spaces. Springer, Berlin (1983)
Nekvinda, A.: Hardy-Littlewood maximal operator on L p(.)(ℝn). Math. Inequal. Appl. 7(2), 255–266 (2004)
Okpoti, C.A., Persson, L.-E., Sinnamon, G.: Equivalence theorem for some integral conditions with general measures related to Hardy’s inequality I. J. Math. Anal. Appl. 326, 398–413 (2007)
Okpoti, C.A., Persson, L.-E., Sinnamon, G.: Equivalence theorem for some integral conditions with general measures related to Hardy’s inequality II. J. Math. Anal. Appl. 337, 219–230 (2008)
Opic, B., Kufner, A.: Hardy Type Inequalities. Wiley, New York (1990)
Pick, L., Ruzicka, M.: An example of a space L p(.)(ℝn) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19, 369–371 (2001)
Rafeiro, H., Samko, S.: Hardy type inequality in variable Lebesgue spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 34(1), 279–289 (2009)
Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)
Samko, S.G.: Hardy–Littlewood–Stein–Weiss inequality in the Lebesgue spaces with variable exponent. Fract. Calc. Appl. Anal. 6(4), 421–440 (2003)
Samko, S.G.: Hardy inequality in the generalized Lebesgue spaces. Fract. Calc. Appl. Anal. 6(4), 355–362 (2003)
Sinnamon, G., Stepanov, V.: The weighted Hardy inequality: new proofs and the case p=1. J. Lond. Math. Soc. 54(2), 89–101 (1996)
Stepanov, V.D.: Weighted norm inequalities of Hardy type for a class of integral operators. J. Lond. Math. Soc. 50(2), 105–120 (1994)
Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5(1), 105–116 (1997)
Wedestig, A.: Weighted inequalities of Hardy-type and their limiting inequalities. Doctoral thesis, Dep. Mathem., Lulea University, 2003
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cruz-Uribe, D., Mamedov, F.I. On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces. Rev Mat Complut 25, 335–367 (2012). https://doi.org/10.1007/s13163-011-0076-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-011-0076-5