Skip to main content

Advertisement

Log in

Weighted weak modular and norm inequalities for the Hardy operator in variable L p spaces of monotone functions

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We study weak-type modular inequalities for the Hardy operator restricted to non-increasing functions on weighted L p(⋅) spaces, where p(⋅) is a variable exponent. These new estimates complete the results of Boza and Soria (J. Math. Anal. Appl. 348:383–388, 2008) where we showed some necessary and sufficient conditions on the exponent p(⋅) and on the weights to obtain weighted modular inequalities with variable exponents. For this purpose, we introduced the class of weights B p(⋅). We prove that, for exponents p(x)>1, this is also the class of weights for which the weak modular inequality holds, and a characterization is also given in the case p(x)≤1. Finally, we compare our theory with the results in Neugebauer (Stud. Math. 192(1):51–60, 2009), giving examples for very concrete and simple exponents which show that inequalities in norm hold true in a very general context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, M.I., Ortega, P.: Weighted weak type inequalities with variable exponents for Hardy and maximal operators. Proc. Jpn. Acad., Ser. A, Math. Sci. 82, 126–130 (2006)

    Article  MATH  Google Scholar 

  2. Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320, 727–735 (1990)

    MATH  Google Scholar 

  3. Boza, S., Soria, J.: Weighted Hardy modular inequalities in variable L p spaces for decreasing functions. J. Math. Anal. Appl. 348, 383–388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carro, M.J., Soria, J.: Boundedness of some integral operators. Can. J. Math. 45, 1155–1166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carro, M.J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112, 480–494 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carro, M.J., Pick, L., Soria, J., Stepanov, V.: On embeddings between classical Lorentz spaces. Math. Inequal. Appl. 4, 397–428 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Carro, M.J., Raposo, J.A., Soria, J.: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Mem. Am. Math. Soc., vol. 187, Am. Math. Soc., Providence (2007)

    Google Scholar 

  8. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

    MathSciNet  Google Scholar 

  10. Diening, L., Hästö, P.: Muckenhoupt weights in variable exponents spaces. Preprint

  11. Edmunds, D.E., Kokilashvili, V., Meshki, A.: On the boundedness and compactness of weighted Hardy operators in spaces L p(x). Georgian Math. J. 12, 27–44 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Kovavcik, O., Rakosnik, J.: On spaces L p(x) and W p(x). Czechoslov. Math. J. 41, 592–618 (1991)

    Google Scholar 

  13. Lerner, A.K.: On modular inequalities in variable L p spaces. Arch. Math. 85, 538–543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mashiyev, R.A., Çekiç, B., Mamedov, F.I., Ogras, S.: Hardy’s inequality in power-type weighted L p(⋅)(0,∞) spaces. J. Math. Anal. Appl. 334, 289–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neugebauer, C.J.: Weighted norm inequalities for averaging operators of monotone functions. Publ. Mat. 35, 429–447 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Neugebauer, C.J.: Weighted variable L p integral inequalities for the maximal operator on non-increasing functions. Stud. Math. 192(1), 51–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96, 145–158 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Sinnamon, G.: Four questions related to Hardy’s inequality. In: Function Spaces and Applications, Delhi, 1997, pp. 255–266. Narosa, New Delhi (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Boza.

Additional information

Both authors have been partially supported by Grant MTM2010-14946.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boza, S., Soria, J. Weighted weak modular and norm inequalities for the Hardy operator in variable L p spaces of monotone functions. Rev Mat Complut 25, 459–474 (2012). https://doi.org/10.1007/s13163-011-0071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-011-0071-x

Keywords

Mathematics Subject Classification (2000)

Navigation