Revista Matemática Complutense

, Volume 24, Issue 1, pp 189–209 | Cite as

The fractal Dirichlet Laplacian

  • António M. Caetano
  • Sofia LopesEmail author


An h-set is a non-empty compact subset of the Euclidean n-space which supports a finite Radon measure for which the measure of balls centered on the subset is essentially given by the image of their radius by a suitable function h. In most cases of interest such a subset has Lebesgue measure zero and has a fractal structure.

We prove the existence of solutions for the so-called fractal Dirichlet problem for such h-sets.

The “construction” of the solutions is based on the consideration of complete o.n. systems for convenient function spaces on the fractals. These systems are obtained combining properties of traces with integral representations (obtained with the help of Green’s functions) for the so-called fractal Laplacian.


Fractals Function spaces Dirichlet problem Laplacian h-sets Traces 

Mathematics Subject Classification (2000)

28A80 35J25 46E35 47F05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, vol. 314. Springer, Berlin (1996) Google Scholar
  2. 2.
    Almeida, A.: Wavelet bases in generalized Besov spaces. J. Math. Anal. Appl. 304(1), 198–211 (2005) zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bricchi, M.: Tailored function spaces and related h-sets. Ph.D. Thesis, Univ. Jena, Fakultät für Mathematik und Informatik (2001) Google Scholar
  4. 4.
    Bricchi, M.: Complements and results on h-sets. In: Function Spaces, Differential Operators and Nonlinear Analysis, Teistungen, 2001, pp. 219–229. Birkhäuser, Basel (2003) Google Scholar
  5. 5.
    Bricchi, M.: Tailored Besov spaces and h-sets. Math. Nachr. 263/264, 36–52 (2004) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Caetano, A.M., Lopes, S.: Spectral theory for the fractal Laplacian in the context of h-sets. Math. Nachr. (to appear) Google Scholar
  7. 7.
    Caetano, A.M., Lopes, S.: Homogeneity, non-smooth atoms and Besov spaces of generalised smoothness on quasi-metric spaces. Diss. Math. (Rozprawy Mat.) 460, 44 (2009) MathSciNetGoogle Scholar
  8. 8.
    Cobos, F., Fernandez, D.L.: Hardy-Sobolev spaces and Besov spaces with a function parameter. In: Function Spaces and Applications, Lund, 1986. Lecture Notes in Math., vol. 1302, pp. 158–170. Springer, Berlin (1988) CrossRefGoogle Scholar
  9. 9.
    Edmunds, D.E., Triebel, H.: Spectral theory for isotropic fractal drums. C. R. Acad. Sci. Paris Sér. I Math. 326(11), 1269–1274 (1998) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Farkas, W., Leopold, H.-G.: Characterisations of function spaces of generalised smoothness. Ann. Math. Pura Appl. (4) 185(1), 1–62 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Goldman, M.L.: A description of the trace space for functions of a generalized Hölder class. Dokl. Akad. Nauk SSSR 231(3), 525–528 (1976) MathSciNetGoogle Scholar
  12. 12.
    Haroske, D.D., Triebel, H.: Distributions, Sobolev spaces, elliptic equations. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2008) Google Scholar
  13. 13.
    Jonsson, A.: Besov spaces on closed subsets of R n. Trans. Am. Math. Soc. 341(1), 355–370 (1994) zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Jonsson, A., Wallin, H.: Function Spaces on Subsets of R n. Math. Rep., vol. 2(1). Harwood Academic, Reading (1984) Google Scholar
  15. 15.
    Kaljabin, G.A., Lizorkin, P.I.: Spaces of functions of generalized smoothness. Math. Nachr. 133, 7–32 (1987) zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Knopova, V., Zähle, M.: Spaces of generalized smoothness on h-sets and related Dirichlet forms. Stud. Math. 174(3), 277–308 (2006) zbMATHCrossRefGoogle Scholar
  17. 17.
    Mattila, P.: In: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  18. 18.
    Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. In: Interpolation Spaces and Allied Topics in Analysis. Lecture Notes in Math., vol. 1070, pp. 183–201. Springer, Berlin (1984) CrossRefGoogle Scholar
  19. 19.
    Moura, S.D.: Function spaces of generalised smoothness. Disser. Math. (Rozprawy Mat.) 398, 88 (2001) MathSciNetGoogle Scholar
  20. 20.
    Moura, S.D.: Function spaces of generalised smoothness, entropy numbers, applications. Ph.D. Thesis, University of Coimbra (2001) Google Scholar
  21. 21.
    Moura, S.D.: On some characterizations of Besov spaces of generalized smoothness. Math. Nachr. 280(9–10), 1190–1199 (2007) zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Runst, T., Sickel, W.: In: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. de Gruyter, Berlin (1996) Google Scholar
  23. 23.
    Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980) zbMATHGoogle Scholar
  24. 24.
    Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983) CrossRefGoogle Scholar
  25. 25.
    Triebel, H.: Higher Analysis. University Books for Mathematics, Johann Ambrosius Barth Verlag GmbH, Leipzig (1992) zbMATHGoogle Scholar
  26. 26.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995) zbMATHGoogle Scholar
  27. 27.
    Triebel, H.: Fractals and Spectra. Monographs in Mathematics, vol. 91. Birkhäuser, Basel (1997) zbMATHCrossRefGoogle Scholar
  28. 28.
    Triebel, H.: The Structure of Functions. Monographs in Mathematics, vol. 97. Birkhäuser, Basel (2001) zbMATHGoogle Scholar
  29. 29.
    Triebel, H.: Theory of Function Spaces III. Monographs in Mathematics, vol. 100. Birkhäuser, Basel (2006) zbMATHGoogle Scholar

Copyright information

© Revista Matemática Complutense 2010

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal
  2. 2.ESTM, Instituto Politécnico de Leiria and Departamento de MatemáticaUniversidade de AveiroAveiroPortugal

Personalised recommendations