Abstract
In this paper we study an optimal control problem associated to a linear degenerate elliptic equation with mixed boundary conditions. The equations of this type can exhibit the Lavrentieff phenomenon and non-uniqueness of weak solutions. We adopt the weight function as a control in L 1(Ω). Using the direct method in the Calculus of variations, we discuss the solvability of this optimal control problem in the class of weak admissible solutions.
Similar content being viewed by others
References
Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in L 1. Differ. Integral Equ. 9, 209–212 (1996)
Bouchitte, G., Buttazzo, G.: Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3, 139–168 (2001)
Buttazzo, G., Varchon, N.: On the optimal reinforcement of an elastic membrane. Riv. Mat. Univ. Parma 4(7), 115–125 (2005)
Caldiroli, P., Musina, R.: On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl. 7, 187–199 (2000)
Chiadò Piat, V., Serra Cassano, F.: Some remarks about the density of smooth functions in weighted Sobolev spaces. J. Convex Anal. 1(2), 135–142 (1994)
Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)
Chabrowski, J.: Degenerate elliptic equation involving a subcritical Sobolev exponent. Port. Math. 53, 167–177 (1996)
Cirmi, G.R., Porzio, M.M.: L ∞-solutions for some nonlinear degenerate elliptic and parabolic equations. Ann. Mat. Pura Appl. 169, 67–86 (1995)
Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin (1985)
Kovalevsky, A.A., Gorban, Yu.S.: Degenerate anisotropic variational inequalities with L 1-data. C.R.A.S. Paris, Sér. I 345, 441–444 (2007)
Murat, F.: Un contre-exemple pour le prolème de contrôle dans les coefficients. C.R.A.S. Paris, Sér. A 273, 708–711 (1971)
Murthy, M.K.V., Stampacchia, V.: Boundary problems for some degenerate elliptic operators. Ann. Mat. Pura Appl. 5(4), 1–122 (1968)
Pastukhova, S.E.: Degenerate equations of monotone type: Lavrentev phenomenon and attainability problems. Sb. Math. 198(10), 1465–1494 (2007)
Villaggio, P.: Calcolo delle variazioni e teoria delle strutture. Boll. Univ. Mat. Ital. Ser. VIII VII-A, 49–76 (2004)
Zhikov, V.V.: Weighted Sobolev spaces. Sb. Math. 189(8), 27–58 (1998)
Zhikov, V.V., Pastukhova, S.E.: Homogenization of degenerate elliptic equations. Sib. Math. J. 49(1), 80–101 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Buttazzo, G., Kogut, P.I. Weak optimal controls in coefficients for linear elliptic problems. Rev Mat Complut 24, 83–94 (2011). https://doi.org/10.1007/s13163-010-0030-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-010-0030-y
Keywords
- Degenerate elliptic equations
- Control in coefficients
- Weighted Sobolev spaces
- Lavrentieff phenomenon
- Calculus of variations