Skip to main content
Log in

Weak optimal controls in coefficients for linear elliptic problems

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper we study an optimal control problem associated to a linear degenerate elliptic equation with mixed boundary conditions. The equations of this type can exhibit the Lavrentieff phenomenon and non-uniqueness of weak solutions. We adopt the weight function as a control in L 1(Ω). Using the direct method in the Calculus of variations, we discuss the solvability of this optimal control problem in the class of weak admissible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in L 1. Differ. Integral Equ. 9, 209–212 (1996)

    MATH  Google Scholar 

  2. Bouchitte, G., Buttazzo, G.: Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3, 139–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buttazzo, G., Varchon, N.: On the optimal reinforcement of an elastic membrane. Riv. Mat. Univ. Parma 4(7), 115–125 (2005)

    MathSciNet  Google Scholar 

  4. Caldiroli, P., Musina, R.: On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl. 7, 187–199 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chiadò Piat, V., Serra Cassano, F.: Some remarks about the density of smooth functions in weighted Sobolev spaces. J. Convex Anal. 1(2), 135–142 (1994)

    MATH  MathSciNet  Google Scholar 

  6. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    MATH  Google Scholar 

  7. Chabrowski, J.: Degenerate elliptic equation involving a subcritical Sobolev exponent. Port. Math. 53, 167–177 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Cirmi, G.R., Porzio, M.M.: L -solutions for some nonlinear degenerate elliptic and parabolic equations. Ann. Mat. Pura Appl. 169, 67–86 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Berlin (1985)

    Google Scholar 

  10. Kovalevsky, A.A., Gorban, Yu.S.: Degenerate anisotropic variational inequalities with L 1-data. C.R.A.S. Paris, Sér. I 345, 441–444 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Murat, F.: Un contre-exemple pour le prolème de contrôle dans les coefficients. C.R.A.S. Paris, Sér. A 273, 708–711 (1971)

    MATH  MathSciNet  Google Scholar 

  12. Murthy, M.K.V., Stampacchia, V.: Boundary problems for some degenerate elliptic operators. Ann. Mat. Pura Appl. 5(4), 1–122 (1968)

    MathSciNet  Google Scholar 

  13. Pastukhova, S.E.: Degenerate equations of monotone type: Lavrentev phenomenon and attainability problems. Sb. Math. 198(10), 1465–1494 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Villaggio, P.: Calcolo delle variazioni e teoria delle strutture. Boll. Univ. Mat. Ital. Ser. VIII VII-A, 49–76 (2004)

    Google Scholar 

  15. Zhikov, V.V.: Weighted Sobolev spaces. Sb. Math. 189(8), 27–58 (1998)

    Article  MathSciNet  Google Scholar 

  16. Zhikov, V.V., Pastukhova, S.E.: Homogenization of degenerate elliptic equations. Sib. Math. J. 49(1), 80–101 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Buttazzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttazzo, G., Kogut, P.I. Weak optimal controls in coefficients for linear elliptic problems. Rev Mat Complut 24, 83–94 (2011). https://doi.org/10.1007/s13163-010-0030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-010-0030-y

Keywords

Mathematics Subject Classification (2000)

Navigation