Skip to main content
Log in

On Blaschke products, Bloch functions and normal functions

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We prove that if G is an analytic function in the unit disc such that G(z)→∞, as z→1, and B is an infinite Blaschke product whose sequence of zeros is contained in a Stolz angle with vertex at 1 then the function f=BG is not a normal function.

We prove also some results on the asymptotic cluster set of a thin Blaschke product with positive zeros which are related with the question of the existence of non-normal outer functions with restricted mean growth of the derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J.M., Clunie, J., Pommerenke, Ch.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974)

    MATH  MathSciNet  Google Scholar 

  2. Baernstein, A. II: Analytic functions of bounded mean oscillation. In: Brannan, D., Clunie, J. (eds.) Aspects of Contemporary Complex Analysis, pp. 3–36. Academic Press, New York (1980)

    Google Scholar 

  3. Blasco, O., Soares de Souza, G.: Spaces of analytic functions on the disc where the growth of M p (F,r) depends on a weight. J. Math. Anal. Appl. 147(2), 580–598 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blasco, O., Girela, D., Márquez, M.A.: Mean growth of the derivative of analytic functions, bounded mean oscillation, and normal functions. Indiana Univ. Math. J. 47, 893–912 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourdon, P., Shapiro, J., Sledd, W.: Fourier series, mean Lipschitz spaces and bounded mean oscillation. In: Berkson, E.R., Peck, N.T., Uhl, J. (eds.) Analysis at Urbana 1, Proceedings of the Special Year in Modern Analysis at the University of Illinois, 1986–1987. London Math. Soc. Lecture Notes Series, vol. 137, pp. 81–110. Cambridge Univ. Press, Cambridge (1989)

    Google Scholar 

  6. Brown, L., Hansen, L.: A nonnormal outer function in H p. Proc. Am. Math. Soc. 34, 175–176 (1972)

    MATH  MathSciNet  Google Scholar 

  7. Campbell, D.M.: Nonnormal sums and products of unbounded normal functions. II. Proc. Am. Math. Soc. 74(1), 202–203 (1979)

    MATH  Google Scholar 

  8. Cima, J.A., Petersen, K.E.: Some analytic functions whose boundary values have bounded mean oscillation. Math. Z. 147, 237–347 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duren, P.L.: Theory of H p Spaces. Academic Press, New York/London (1970). Reprint: Dover, Mineola, New York (2000)

    MATH  Google Scholar 

  10. Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  11. Gehring, F.W.: The asymptotic values for analytic functions with bounded characteristic. Q. J. Math. Oxford Ser. (2) 19, 282–289 (1958)

    Article  Google Scholar 

  12. Girela, D.: On a theorem of Privalov and normal functions. Proc. Am. Math. Soc. 125(2), 433–442 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Girela, D.: Mean Lipschitz spaces and bounded mean oscillation. Ill. J. Math. 41(2), 214–230 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Girela, D.: Analytic functions of bounded mean oscillation. In: R. Aulaskari (ed.) Complex Functions Spaces. Univ. Joensuu Dept. Math. Report Series, No. 4, pp. 61–171 (2001)

  15. Girela, D.: A class of conformal mappings with applications to function spaces. In: Recent Advances in Operator-Related Function Theory. Contemp. Math., vol. 393, pp. 113–121. Am. Math. Soc., Providence (2006)

    Google Scholar 

  16. Girela, D., González, C.: Mean growth of the derivative of infinite Blaschke products. Complex Var. Theory Appl. 45(1), 1–10 (2001)

    MATH  Google Scholar 

  17. Girela, D., González, C., Peláez, J.A.: Multiplication and division by inner functions in the space of Bloch functions. Proc. Am. Math. Soc. 134(5), 1309–1314 (2006)

    Article  MATH  Google Scholar 

  18. Gorkin, P., Mortini, R.: Universal Blaschke products. Math. Proc. Camb. Philos. Soc. 136(1), 175–184 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gorkin, P., Mortini, R.: Cluster sets of interpolating Blaschke products. J. Anal. Math. 96, 369–395 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals, II. Math. Z. 34, 403–439 (1932)

    Article  MathSciNet  Google Scholar 

  21. Lappan, P.: Non-normal sums and products of unbounded normal function. Michigan Math. J. 8, 187–192 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  22. Li, K.Y.: Interpolating Blaschke products and the left spectrum of multiplication operators on the Bergman space. Hokkaido Math. J. 21(2), 295–304 (1992)

    MATH  MathSciNet  Google Scholar 

  23. Lehto, O., Virtanen, K.I.: Boundary behaviour and normal meromorphic functions. Acta Math. 97, 47–65 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oskolkov, K.I.: Uniform modulus of continuity of summable functions on sets of positive measure. Dokl. Akad. Nauk SSSR 229(2), 304–306 (1976) (In Russian). English transl. in Sov. Math. Dokl. 17(4), 1028–1030 (1976/1977)

    MathSciNet  Google Scholar 

  25. Oskolkov, K.I.: Approximation properties of summable functions on sets of full measure. Mat. Sb., Ser. 32(4), 563–589 (1977) (In Russian). English transl. in Math. USSR Sb. 32(4), 489–514 (1978)

    MathSciNet  Google Scholar 

  26. Oskolkov, K.I., Luzin’s C-property, On: for a conjugate function. Trudy Mat. Inst. Steklova 164, 124–135 (1983) (In Russian). English transl. in Proc. Steklov Inst. Math. 164, 141–153 (1985)

    MATH  Google Scholar 

  27. Pommerenke, Ch.: Univalent Functions. Vandenhoeck und Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  28. Yamashita, S.: A nonnormal function whose derivative has finite area integral of order 0<p<2. Ann. Acad. Sci. Fenn. Ser. A I Math. 4(2), 293–298 (1979)

    MATH  MathSciNet  Google Scholar 

  29. Yamashita, S.: A nonnormal function whose derivative is of Hardy class H p, 0<p<1. Canad. Math. Bull. 23(4), 499–500 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Girela.

Additional information

The authors thankfully acknowledge partial support from the following grants. The first author: MTM2007-60854 (MICINN, Spain ); FQM-210 and P06-FQM01504 (Junta de Andalucía) and “Harmonic and Complex Analysis and Its Applications” (European Networking Programme, ESF). The second author: The Ramón and Cajal program and grants MTM2008-00145 and 2009SGR00420 (MICINN, Spain ). Both authors: MTM2008-02829-E and Ingenio Mathematica (i-MATH) No. CSD2006-00032 (MICINN, Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girela, D., Suárez, D. On Blaschke products, Bloch functions and normal functions. Rev Mat Complut 24, 49–57 (2011). https://doi.org/10.1007/s13163-010-0027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-010-0027-6

Keywords

Mathematics Subject Classification (2000)

Navigation