Skip to main content
Log in

An inexact fixed point iteration method for solving absolute value equation

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The fixed point iteration method is an effective method for solving absolute value equation via equivalent two-by-two block form. To further improve the computational efficiency of the fixed point iteration method, by using the preconditioned shift-splitting strategy, we propose an inexact fixed point iteration method for solving absolute value equation in this paper. We obtain some convergence conditions for the proposed method. The effectiveness of the proposed method are shown by three examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed in this study.

References

  1. Ali, R., Pan, K.-J.: Two new fixed point iteration schemes for absolute value equations. Jpn. J. Ind. Appl. Math. 40, 303–314 (2023)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539–552 (2006)

    MathSciNet  Google Scholar 

  3. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press (1992)

    Google Scholar 

  4. Cui, L.-B., Hu, Q.: A chord-Zhang neural network model for solving absolute value equations. Pac. J. Optim. 18, 77–89 (2022)

    MathSciNet  Google Scholar 

  5. Dou, Y., Yang, A.-L., Wu, Y.-J.: A new Uzawa-type iteration method for non-Hermitian saddle-point problems. East Asian J. Appl. Math. 7, 211–226 (2017)

    Article  MathSciNet  Google Scholar 

  6. Guo, P., Wu, S.-L., Li, C.-X.: On the SOR-like iteration method for solving absolute value equations. Appl. Math. Lett. 97, 107–113 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hladik, M., Moosaei, H.: Some notes on the solvability conditions for absolute value equations. Optim. Lett. 17, 211–218 (2023)

    Article  MathSciNet  Google Scholar 

  8. Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311, 195–202 (2017)

    MathSciNet  Google Scholar 

  9. Ke, Y.-F.: The new iteration algorithm for absolute value equation. Appl. Math. Lett. 99, 105990 (2020)

    Article  MathSciNet  Google Scholar 

  10. Ketabchi, S., Moosaei, H.: An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl. 64, 1882–1885 (2012)

    Article  MathSciNet  Google Scholar 

  11. Li, X., Li, Y.-X., Dou, Y.: Shift-splitting fixed point iteration method for solving generalized absolute value equations. Numer. Algorithms. 93, 695–710 (2023)

    Article  MathSciNet  Google Scholar 

  12. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36, 43–53 (2007)

    Article  MathSciNet  Google Scholar 

  13. Mansoori, A., Eshaghnezhad, M., Effati, S.: An efficient neural network model for solving the absolute value equations. IEEE Trans. Circuits Syst. II Express Briefs 65, 391–395 (2018)

    Google Scholar 

  14. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1, 3–8 (2007)

    Article  MathSciNet  Google Scholar 

  15. Noor, M.A., Iqbal, J., Noor, K.I., Al-Said, E.: On an iterative method for solving absolute value equations. Optim. Lett. 6, 1027–1033 (2012)

    Article  MathSciNet  Google Scholar 

  16. Rohn, J.: A theorem of the alternatives for the equation \(Ax+B\vert x\vert =b\). Linear Multilinear Algebra 52, 421–426 (2004)

    Article  MathSciNet  Google Scholar 

  17. Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8, 2191–2202 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wu, S.-L., Guo, P.: Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math. 132, 127–137 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wu, S.-L., Li, C.-X.: The unique solution of the absolute value equations. Appl. Math. Lett. 76, 195–200 (2018)

    Article  MathSciNet  Google Scholar 

  20. Wang, A., Cao, Y., Chen, J.-X.: Modified Newton-type iteration methods for generalized absolute value equations. J. Optim. Theory Appl. 181, 216–230 (2019)

    Article  MathSciNet  Google Scholar 

  21. Yu, D.-M., Chen, C.-R., Han, D.-R.: A modifed fixed point iteration method for solving the system of absolute value equations. Optimization 71, 449–461 (2022)

    Article  MathSciNet  Google Scholar 

  22. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press (1971)

    Google Scholar 

Download references

Acknowledgements

The author thank editor and the anonymous referees for their constructive suggestions and helpful comments, which greatly improved the quality of this paper. First author is supported by the Excellent Postgraduate Innovation Star Scientific Research Project of Gansu Province (No. 2023CXZX-327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Mei Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XM., Miao, SX. An inexact fixed point iteration method for solving absolute value equation. Japan J. Indust. Appl. Math. 41, 1137–1148 (2024). https://doi.org/10.1007/s13160-023-00641-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00641-3

Keywords

Mathematics Subject Classification

Navigation