Skip to main content
Log in

Asymptotic reflection of a self-propelled particle from a boundary wall

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Exact expressions for the relationship between angles of incidence and reflection from a boundary wall in nonlinear dissipative particle models are extremely rare. Here, we study a particle model of a camphor disk floating on water in a low speed limit, for which the model was derived. We begin with a very rough and inaccurate approximation, based in part on a Hamiltonian limit of the model, and then, using symmetry arguments supported by a series of experiments, show that this rough approximation can likely be repaired by introducing a factor dependent upon model parameters, then extract the full parameter dependence of this factor, and finally conjecture a simple and exact asymptotic relationship between the angles of incidence and reflection. There are reasons to believe that this asymptotic relationship may be universal for such models in their corresponding limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bengtsson, L., Böttger, H., Kanamitsu, M.: Simulation of hurricane-type vortices in a general circulation model. Tellus 34(5), 440–457 (1982)

    Article  Google Scholar 

  2. Boniface, D., Cottin-Bizonne, C., Kervil, R., Ybert, C., Detcheverry, F.: Self-propulsion of symmetric chemically active particles: point-source model and experiments on camphor disks. Phys. Rev. E 99(6), 062605 (2019)

    Article  Google Scholar 

  3. Chen, X., Ei, S.-I., Mimura, M.: Self-motion of camphor discs. Model and analysis. Netw. Heterog. Media 4, 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  4. De Buyl, P., Mikhailov, A.S., Kapral, R.: Self-propulsion through symmetry breaking. Europhys. Lett. 103(6), 60009 (2013)

    Article  Google Scholar 

  5. Ei, S.-I., Mimura, M., Miyaji, T.: Reflection of a self-propelling rigid disk from a boundary. Discret. Contin. Dyn. Syst. S 14(3), 803–817 (2021)

    MathSciNet  Google Scholar 

  6. Ei, S.-I., Mimura, M., Nagayama, M.: Interacting spots in reaction diffusion systems. Discret. Contin. Dyn. Syst. 14, 31–62 (2006)

    MathSciNet  Google Scholar 

  7. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), Article 13 (2007). https://www.mpfr.org. Accessed 04 July 2022

  8. Garwin, R.L.: Kinematics of an ultraelastic rough ball. Am. J. Phys. 37(1), 88–92 (1969)

    Article  Google Scholar 

  9. Gérardin, B., Laurent, J., Ambichl, P., Prada, C., Rotter, S., Aubry, A.: Particlelike wave packets in complex scattering systems. Phys. Rev. B 94, 014209 (2016)

    Article  Google Scholar 

  10. Kitahata, H., Yoshikawa, K.: Chemo-mechanical energy transduction through interfacial instability. Phys. D 205, 283–291 (2005)

    Article  Google Scholar 

  11. Krischer, K., Mikhailov, A.: Bifurcation to traveling spots in reaction-diffusion systems. Phys. Rev. Lett. 73(23), 3165–3168 (1994)

    Article  Google Scholar 

  12. Langham, J., Barkley, D.: Non-specular reflections in a macroscopic system with wave-particle duality: spiral waves in bounded media. Chaos 23, 013134 (2013)

    Article  MathSciNet  Google Scholar 

  13. Langham, J., Biktasheva, I., Barkley, D.: Asymptotic dynamics of reflecting spiral waves. Phys. Rev. E 90, 062902 (2014)

    Article  Google Scholar 

  14. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  15. Maple (2019). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. https://www.maplesoft.com/products/Maple/. Accessed 04 July 2022

  16. Mimura, M., Miyaji, T., Ohnishi, I.: A billiard problem in nonlinear and nonequilibrium systems. Hiroshima Math. J. 37, 343–384 (2007)

    Article  MathSciNet  Google Scholar 

  17. Miyaji, T.: Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems. Phys. D 340, 14–25 (2017)

    Article  MathSciNet  Google Scholar 

  18. Nakata, S., Nagayama, M.: Chapter 1: Theoretical and experimental design of self-propelled objects based on nonlinearity. In: Nakata, S., et al. (eds.) Self-organized Motion: Physicochemical Design Based on Nonlinear Dynamics, pp. 1–30. (2019)

  19. Nishiura, Y.: Far-from-Equilibrium Dynamics. Translated by K. Sakamoto. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  20. Nishiura, Y., Teramoto, T.: Refraction, reflection and splitting. RIMS Kôkyûroku Bessatsu B31, 167–194 (2012)

    MathSciNet  Google Scholar 

  21. Olmos, D., Shizgal, B.: Annihilation and reflection of spiral waves at a boundary for the Beeler–Reuter model. Phys. Rev. E 77, 031918 (2008)

    Article  Google Scholar 

  22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  23. Prati, F., Lugiato, L.A., Tissoni, G., Brambilla, M.: Cavity soliton billiards. Phys. Rev. A 84, 053852 (2011)

    Article  Google Scholar 

  24. Protière, S., Boudaoud, A., Couder, Y.: Particle-wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006)

    Article  MathSciNet  Google Scholar 

  25. Pucci, G., Sáenz, P.J., Faria, L.M., Bush, J.W.M.: Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3 (2016)

    Article  Google Scholar 

  26. Suematsu, N.J., Nakata, S.: Evolution of self-propelled objects: from the viewpoint of nonlinear science. Chem. Eur. J. 24, 6308–6324 (2018)

    Article  Google Scholar 

  27. Teramoto, T., Suzuki, K., Nishiura, Y.: Rotational motion of traveling spots in dissipative systems. Phys. Rev. E 80, 046208 (2009)

    Article  Google Scholar 

  28. Tlidi, M., Staliunas, K., Panajotov, K., Vladimirov, A.G., Clerc, M.G.: Localized structures in dissipative media: from optics to plant ecology. Philos. Trans. R. Soc. A. 372, 20140101 (2014)

    Article  Google Scholar 

  29. Uspal, W.E., Popescu, M.N., Dietrichab, S., Tasinkevych, M.: Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matter 11, 434–438 (2015)

    Article  Google Scholar 

  30. Verner, J.H.: Explicit Runge–Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal. 15(4), 772–790 (1978)

    Article  MathSciNet  Google Scholar 

  31. Wilczak, D.: The CAPD group. http://capd.sourceforge.net/capdDynSys/. Accessed 04 July 2022

  32. Winfree, A.T.: Spiral waves of chemical activity. Science 175(4022), 634–636 (1972)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19K03626 and MEXT Promotion of Distinctive Joint Research Center Program Grant Number JPMXP0620335886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Miyaji.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Dedicated to the memory of Professor Masayasu Mimura.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyaji, T., Sinclair, R. Asymptotic reflection of a self-propelled particle from a boundary wall. Japan J. Indust. Appl. Math. 41, 269–295 (2024). https://doi.org/10.1007/s13160-023-00602-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00602-w

Keywords

Mathematics Subject Classification

Navigation