Skip to main content
Log in

Convergence of linear and nonlinear Neumann–Neumann method for the Cahn–Hilliard equation

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of great importance to develop a robust numerical method for investigating the solution behaviour of the CH equation. We present the formulation of the Neumann–Neumann method applied to the CH equation and study its convergence behaviour in one and two spatial dimension for two subdomains and also extend the method for logarithmic nonlinearity. We also present the nonlinear NN method for the CH equation. We illustrate the theoretical results by providing numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All the data that was produced or generated during the course of the research has been included in the manuscript.

References

  1. Bak, J., Newman, D.J., Newman, D.J.: Complex Analysis, vol. 8. Springer, Berlin (2010)

    Book  Google Scholar 

  2. Bertozzi, A.L., Esedoḡlu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23, 1097–1120 (1986)

    Article  MathSciNet  Google Scholar 

  4. Bourgat, J.-F., Glowinski, R., Le Tallec, P., Vidrascu, M.: Variational Formulation and Algorithm for Trace Operation in Domain Decomposition Calculations, Domain Decomposition Methods for Partial Differential Equations, vol. II, pp. 3–16. SIAM, Philadelphia (1989)

    Google Scholar 

  5. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  6. Cahn, J.W., Hilliard, W.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  7. Carlenzoli, C., Quarteroni, A.: Adaptive domain decomposition methods for advection-diffusion problems. In: Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, pp. 165–186. Springer, Berlin (1995)

    Chapter  Google Scholar 

  8. Chaouqui, F., Gander, M. J., Santugini-Repiquet, K.: On nilpotent subdomain iterations. In: Domain Decomposition Methods in Science and Engineering XXIII. Springer, Berlin, pp. 125–133 (2017)

  9. Chaouqui, F., Gander, M. J., Santugini-Repiquet, K.: A local coarse space correction leading to a well-posed continuous Neumann–Neumann method in the presence of cross points. In: International Conference on Domain Decomposition Methods. Springer, Berlin, pp. 83–91 (2018)

  10. Chaouqui, F., Ciaramella, G., Gander, M.J., Vanzan, T.: On the scalability of classical one-level domain-decomposition methods. Vietnam J. Math. 46, 1053–1088 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chaouqui, F., Gander, M.J., Santugini-Repiquet, K.: A continuous analysis of Neumann–Neumann methods: scalability and new coarse spaces. SIAM J. Sci. Comput. 42, A3785–A3811 (2020)

    Article  MathSciNet  Google Scholar 

  12. Debussche, A., Dettori, L.: On the Cahn–Hilliard equation with a logarithmic free energy. Nonlinear Anal. Theory Methods Appl. 24, 1491–1514 (1995)

    Article  MathSciNet  Google Scholar 

  13. Eyre, D.J., Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA,: vol. 529 of Mater. Res. Soc. Sympos. Proc. MRS, Warrendale, PA vol. 1998, pp. 39–46 (1998)

  14. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems, Unpublished article, (1998)

  15. Garai, G., Mandal, B.C.: Convergence of substructuring methods for the Cahn–Hilliard equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107175 (2023)

    Article  MathSciNet  Google Scholar 

  16. Le Tallec, P., De Roeck, Y.-H., Vidrascu, M.: Domain decomposition methods for large linearly elliptic three-dimensional problems. J. Comput. Appl. Math. 34, 93–117 (1991)

    Article  MathSciNet  Google Scholar 

  17. Lee, S., Lee, C., Lee, H.G., Kim, J.: Comparison of different numerical schemes for the Cahn–Hilliard equation. J. KSIAM 17, 197–207 (2013)

    MathSciNet  Google Scholar 

  18. Lee, D., Huh, J.-Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Comput. Mater. Sci. 81, 216–225 (2014)

    Article  Google Scholar 

  19. Lions, P.-L.: On the Schwarz alternating method I. In: Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pp. 1–42. SIAM, Philadelphia (1988)

    Google Scholar 

  20. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 65, 1387–1401 (1996)

    Article  MathSciNet  Google Scholar 

  21. Nicolaenko, B., Scheurer, B.: Low-dimensional behavior of the pattern formation Cahn–Hilliard equation. In: North-Holland Mathematics Studies, vol. 110, pp. 323–336. Elsevier, Oxford (1985)

    Google Scholar 

  22. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differ. Equ. 14, 245–297 (1989)

    Article  MathSciNet  Google Scholar 

  23. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10, 277–298 (1984)

    Article  MathSciNet  Google Scholar 

  24. Pavarino, L.F., Widlund, O.B.: Balancing Neumann–Neumann methods for incompressible stokes equations. Commun. Pure Appl. Math. J. Iss. Courant Inst. Math. Sci. 55, 302–335 (2002)

    Article  MathSciNet  Google Scholar 

  25. Toselli, A., Widlund, O.B.: Domain Decomposition Methods, Algorithms and Theory, vol. 34. Springer, Berlin (2005)

    Book  Google Scholar 

Download references

Acknowledgements

I wish to express my appreciation to Dr. Bankim C. Mandal for his constant support and stimulating suggestions and also like to thank the CSIR India for the financial assistance and IIT Bhubaneswar for research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinda Garai.

Ethics declarations

Conflict of interest

I wish to declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garai, G. Convergence of linear and nonlinear Neumann–Neumann method for the Cahn–Hilliard equation. Japan J. Indust. Appl. Math. 41, 211–232 (2024). https://doi.org/10.1007/s13160-023-00600-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00600-y

Keywords

Mathematics Subject Classification

Navigation