Skip to main content
Log in

A new preconditioner for Gauss–Seidel method for solving multi-linear systems

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

By combining the preconditioner \(I+S_{\varvec{\alpha }}\) by Li et al. (Appl Numer Math 134:105–121, 2018) and some elements of the last row of the majorization matrix associated with the coefficient tensor, we propose a new preconditioner and present the corresponding preconditioned Gauss–Seidel method for solving multi-linear systems with \(\mathcal {M}\)-tensors. Theoretically, we give the convergence and comparison theorems of the proposed preconditioned Gauss–Seidel method. Numerical examples are given to show our theoretical results and the efficiency of the proposed preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Che, M.-L., Qi, L.-Q., Wei, Y.-M.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Che, M.-L., Wei, Y.-M.: Theory and Computation of Complex Tensors and Its Application. Springer, Singapore (2020)

    Book  MATH  Google Scholar 

  3. Cui, L.-B., Chen, C., Li, W., Ng, M.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64, 602–621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui, L.-B., Fan, Y.-D., Zheng, Y.-T.: A general preconditioner accelerated SOR-type iterative method for multi-linear systems with \(\cal{Z} \)-tensors. Comput. Appl. Math. 41, 26 (2022). https://doi.org/10.1007/s40314-021-01712-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, L.-B., Li, W., Ng, M.: Primitive tensors and directed hypergraphs. Linear Algebra Appl. 471, 96–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, L.-B., Li, M.-H., Song, Y.-S.: Preconditioned tensor splitting iterations method for solving multi-linear systems. Appl. Math. Lett. 96, 89–94 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui, L.-B., Zhang, X.-Q., Wu, S.-L.: A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with \(\cal{M} \)-tensors. Comput. Appl. Math. 39, 173 (2020). https://doi.org/10.1007/s40314-020-01194-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, W.-Y., Qi, L.-Q., Wei, Y.-M.: \(\cal{M} \)-tensors and nonsingular \(\cal{M} \)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, W.-Y., Wei, Y.-M.: Solving multi-linear systems with \(\cal{M} \)-tensors. J. Sci. Comput. 68, 689–715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, S.-Q., Zhang, L.-P., Chen, C.-Y., Qi, L.-Q.: Tensor absolute value equations. Sci. China Math. 61, 1695–1710 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, D.-H., Xie, S.-L., Xu, H.-R.: Splitting methods for tensor equations. Numer. Linear Algebra Appl. 24, e2102 (2017). https://doi.org/10.1002/nla.2102

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, W., Liu, D.-D., Vong, S.-W.: Comparison results for splitting iterations for solving multi-linear systems. Appl. Numer. Math. 134, 105–121 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 05, vol. 1, pp. 129–132. IEEE Computer Society Press, Piscataway, NJ (2005)

  14. Liu, D.-D., Li, W., Vong, S.-W.: The tensor splitting with application to solve multi-linear systems. J. Comput. Appl. Math. 330, 75–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, D.-D., Li, W., Vong, S.-W.: A new preconditioned SOR method for solving multi-linear systems with an \(\cal{M} \)-tensor. Calcolo 57, 15 (2020). https://doi.org/10.1007/s10092-020-00364-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, W.-H., Li, W.: On the inverse of a tensor. Linear Algebra Appl. 495, 199–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mo, C.-X., Wei, Y.-M.: On nonnegative solution of multi-linear system with strong \(\cal{M} _{\mathscr {Z}}\)-tensors. Numer. Math. Theor. Meth. Appl. 14, 176–193 (2021)

    Article  Google Scholar 

  18. Neumann, M., Plemmons, R.J.: Convergence of parallel multisplitting iterative methods for \(M\)-matrices. Linear Algebra Appl. 88, 559–573 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ng, M., Qi, L.-Q., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pearson, K.: Essentially positive tensors. Int. J. Algebra 4, 421–427 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Qi, L.-Q.: Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qi, L.-Q., Luo, Z.-Y.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  23. Wang, X.-Z., Che, M.-L., Wei, Y.-M.: Neural networks based approach solving multi-linear systems with \(\cal{M} \)-tensors. Neurocomputing 351, 33–42 (2019)

    Article  Google Scholar 

  24. Wang, X.-Z., Che, M.-L., Wei, Y.-M.: Preconditioned tensor splitting AOR iterative methods for \(\cal{H} \)-tensor equations. Numer. Linear Algebra Appl. 27, e2329 (2020). https://doi.org/10.1002/nla.2329

    Article  MathSciNet  MATH  Google Scholar 

  25. Xie, Z.-J., Jin, X.-Q., Wei, Y.-M.: Tensor methods for solving symmetric \(\cal{M} \)-tensor systems. J. Sci. Comput. 74, 412–425 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, L.-P., Qi, L.-Q., Zhou, G.: \(\cal{M} \)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y.-X., Liu, Q.-L., Chen, Z.: Preconditioned Jacobi type method for solving multi-linear systems with \(\cal{M} \)-tensors. Appl. Math. Lett. 104, 106287 (2020). https://doi.org/10.1016/j.aml.2020.106287

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (No.61967014), the Foundation for Distinguished Young Scholars of Gansu Province (No. 20JR5RA540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Miao, SX. A new preconditioner for Gauss–Seidel method for solving multi-linear systems. Japan J. Indust. Appl. Math. 40, 1159–1173 (2023). https://doi.org/10.1007/s13160-023-00573-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00573-y

Keywords

Mathematics Subject Classification

Navigation