Skip to main content
Log in

Two-parameter double-step scale splitting real-valued iterative method for solving complex symmetric linear systems

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, we first apply the parameter accelerating strategy to the double-step scale splitting (DSS) real-valued algorithm one derived by Zhang et al. (Appl Math Comput 353: 338–346, 2019) and establish a two-parameter DSS real-valued (TDSS) iterative method for solving the large sparse complex symmetric linear systems. Furthermore, we explore the convergence conditions of this method. Moreover, we derive the optimal parameters which minimize an upper bound of the spectral radius of the iteration matrix for the TDSS iterative method. In addition, by utilizing the latest information of the TDSS iterative scheme, we deduce an improved TDSS (ITDSS) iterative method and analyze its convergence properties. At last, the correctness of the theories and the advantages of the ITDSS iterative method over some existing ones are verified by three numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feriani, A., Perotti, F., Simoncini, V.: Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 1719–1739 (2000). https://doi.org/10.1016/s0045-7825(00)00187-0

    Article  MATH  Google Scholar 

  2. Dijk, W.-V., Toyama, F.-M.: Accurate numerical solutions of the time-dependent Schr\(\ddot{u}\)dinger equation. Phys. Rev. E 75, 036707 (2007). https://doi.org/10.1103/physreve.75.036707

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.-Z., Golub, G.-H., Ng, M.-K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003). https://doi.org/10.1137/s0895479801395458

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.-Z., Benzi, M., Chen, F.: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87, 93–111 (2010). https://doi.org/10.1007/s00607-010-0077-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z., Benzi, M., Chen, F.: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56, 297–317 (2011). https://doi.org/10.1007/s11075-010-9441-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Zheng, Q.-Q., Ma, C.-F.: Accelerated PMHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 73, 501–516 (2016). https://doi.org/10.1007/s11075-016-0105-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, T., Zheng, Q.-Q., Lu, L.-Z.: A new iteration method for a class of complex symmetric linear systems. J. Comput. Appl. Math. 325, 188–197 (2017). https://doi.org/10.1016/j.cam.2017.05.002

    Article  MathSciNet  MATH  Google Scholar 

  8. Hezari, D., Salkuyeh, D.-K., Edalatpour, V.: A new iterative method for solving a class of complex symmetric system of linear equations. Numer. Algorithms 73, 927–955 (2016). https://doi.org/10.1007/s11075-016-0123-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Salkuyeh, D.-K.: Two-step scale-splitting method for solving complex symmetric system of linear equations. arXiv preprint, arXiv:1705.02468 (2017)

  10. Salkuyeh, D.-K., Siahkolaei, T.-S.: Two-parameter TSCSP method for solving complex symmetric system of linear equations. Calcolo 55, 1–22 (2018). https://doi.org/10.1007/s10092-018-0252-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Wu, S.-L.: Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems. Numer. Linear Algebra Appl. 22, 338–356 (2015). https://doi.org/10.1002/nla.1952

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, S.-L., Li, C.-X.: A splitting method for complex symmetric indefinite linear system. J. Comput. Appl. Math. 313, 343–354 (2017). https://doi.org/10.1016/j.cam.2016.09.028

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Z.-G.: Modified two-step scale-splitting iteration method for solving complex symmetric linear systems. Comput. Appl. Math. 40, 122 (2021). https://doi.org/10.1007/s40314-021-01514-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Xie, X., Li, H.-B.: On preconditioned Euler-extrapolated single-step Hermitian and skew-Hermitian splitting method for complex symmetric linear systems. Jpn. J. Ind. Appl. Math. 38, 503–518 (2021). https://doi.org/10.1007/s13160-020-00447-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui, L.-B., Zhang, X.-Q., Zheng, Y.-T.: A preconditioner based on a splitting-type iteration method for solving complex symmetric indefinite linear systems. Jpn. J. Ind. Appl. Math. 38, 965–978 (2021). https://doi.org/10.1007/s13160-021-00471-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Pourbagher, M., Salkuyeh, D.-K.: A new two-parameter iteration method for indefinite complex symmetric linear systems. Jpn. J. Ind. Appl. Math. 39, 145–163 (2022). https://doi.org/10.1007/s13160-021-00479-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Bunse-Gerstner, A., Stöver, R.: On a conjugate gradient-type method for solving complex symmetric linear systems. Linear Algebra Appl. 287, 105–123 (1999). https://doi.org/10.1016/s0024-3795(98)10091-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Day, D., Heroux, M.-A.: Solving complex-valued linear systems via equivalent real formulations. SIAM J. Sci. Comput. 23, 480–498 (2001). https://doi.org/10.1137/s1064827500372262

    Article  MathSciNet  MATH  Google Scholar 

  19. Benzi, M., Bertaccini, D.: Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA J. Numer. Anal. 28, 598–618 (2008). https://doi.org/10.1093/imanum/drm039

    Article  MathSciNet  MATH  Google Scholar 

  20. Salkuyeh, D.-K., Hezari, D., Edalatpour, V.: Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 92, 802–815 (2015). https://doi.org/10.1080/00207160.2014.912753

    Article  MathSciNet  MATH  Google Scholar 

  21. Hezari, D., Edalatpour, V., Salkuyeh, D.-K.: Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer. Linear Algebra Appl. 22, 761–776 (2015). https://doi.org/10.1002/nla.1987

    Article  MathSciNet  MATH  Google Scholar 

  22. Edalatpour, V., Hezari, D., Salkuyeh, D.-K.: Accelerated generalized SOR method for a class of complex systems of linear equations. Math. Commun. 20, 37–52 (2015). https://hrcak.srce.hr/140386

  23. Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J.: Preconditioned accelerated generalized successive overrelaxation method for solving complex symmetric linear systems. Comput. Math. Appl. 77, 1902–1916 (2019). https://doi.org/10.1016/j.camwa.2018.11.024

    Article  MathSciNet  MATH  Google Scholar 

  24. Axelsson, O., Salkuyeh, D.-K.: A new version of a preconditioning method for certain two-by-two block matrices with square blocks. BIT Numer. Math. 59, 321–342 (2019). https://doi.org/10.1007/s10543-018-0741-x

    Article  MathSciNet  MATH  Google Scholar 

  25. Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013). https://doi.org/10.1093/imanum/drs001

    Article  MathSciNet  MATH  Google Scholar 

  26. Bai, Z.-Z.: Rotated block triangular preconditioning based on PMHSS. Sci. China Math. 56, 2523–2538 (2013). https://doi.org/10.1007/s11425-013-4695-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62, 655–675 (2013). https://doi.org/10.1007/s11075-013-9696-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Lang, C., Ren, Z.-R.: Inexact rotated block triangular preconditioners for a class of block two-by-two matrices. J. Eng. Math. 93, 87–98 (2015). https://doi.org/10.1007/s10665-013-9674-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Yan, H.-Y., Huang, Y.-M.: Splitting-based block preconditioning methods for block two-by-two matrices of real square blocks. Appl. Math. Comput. 243, 825–837 (2014). https://doi.org/10.1016/j.amc.2014.06.040

    Article  MathSciNet  MATH  Google Scholar 

  30. Saad, Y.: Iterative methods for sparse linear systems. Soc. Ind. Appl. Math. (2003). https://doi.org/10.1137/1.9780898718003.bm

    Article  MATH  Google Scholar 

  31. Greenbaum, A.: Iterative methods for solving linear systems. Soc. Ind. Appl. Math. (1997). https://doi.org/10.1137/1.9781611970937.bm

    Article  MATH  Google Scholar 

  32. Axelsson, O., Kucherov, A.: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7, 197–218 (2000). https://doi.org/10.1002/1099-1506(200005)7:4<197::aid-nla194>3.0.co;2-s

  33. Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66, 811–841 (2014). https://doi.org/10.1007/s11075-013-9764-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Bai, Z.-Z.: On preconditioned iteration methods for complex linear systems. J. Eng. Math. 93, 41–60 (2015). https://doi.org/10.1007/s10665-013-9670-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Liao, L.-D., Zhang, G.-F., Li, R.-X.: Optimizing and improving of the C-to-R method for solving complex symmetric linear systems. Appl. Math. Lett. 82, 79–84 (2018). https://doi.org/10.1016/j.aml.2018.02.020

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, G.-F., Zheng, Z.: A parameterized splitting iteration method for complex symmetric linear systems. Jpn. J. Ind. Appl. Math. 31, 265–278 (2014). https://doi.org/10.1007/s13160-014-0140-x

    Article  MathSciNet  MATH  Google Scholar 

  37. Liang, Z.-Z., Zhang, G.-F.: On SSOR iteration method for a class of block two-by-two linear systems. Numer. Algorithms 71, 655–671 (2016). https://doi.org/10.1007/s11075-015-0015-5

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, J.-H., Dai, H.: A new block preconditioner for complex symmetric indefinite linear systems. Numer. Algorithms 74, 889–903 (2017). https://doi.org/10.1007/s11075-016-0175-y

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng, Q., Lu, L.: A shift-splitting preconditioner for a class of block two-by-two linear systems. Appl. Math. Lett. 66, 54–60 (2017). https://doi.org/10.1016/j.aml.2016.11.009

    Article  MathSciNet  MATH  Google Scholar 

  40. Liang, Z.-Z., Zhang, G.-F.: Robust additive block triangular preconditioners for block two-by-two linear systems. Numer. Algorithms 82, 503–537 (2019). https://doi.org/10.1007/s11075-018-0611-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, Z.-G., Xu, Z., Cui, J.-J.: Preconditioned triangular splitting iteration method for a class of complex symmetric linear systems. Calcolo 56, 1–39 (2019). https://doi.org/10.1007/s10092-019-0318-3

    Article  MathSciNet  MATH  Google Scholar 

  42. Huang, Z.-G.: Efficient block splitting iteration methods for solving a class of complex symmetric linear systems. J. Comput. Appl. Math. 395, 113574 (2021). https://doi.org/10.1016/j.cam.2021.113574

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, J.-H., Wang, Z.-W., Zhao, J.: Double-step scale splitting real-valued iteration method for a class of complex symmetric linear systems. Appl. Math. Comput. 353, 338–346 (2019). https://doi.org/10.1016/j.amc.2019.02.020

    Article  MathSciNet  MATH  Google Scholar 

  44. Young, D.-M.: Iterative Solution of Large Linear Systems. Elsevier, New York (2014). https://doi.org/10.2307/2005542

    Book  Google Scholar 

  45. Wang, K., Di, J., Liu, D.: Improved PHSS iterative methods for solving saddle point problems. Numer. Algorithms 71, 753–773 (2016). https://doi.org/10.1007/s11075-015-0022-6

    Article  MathSciNet  MATH  Google Scholar 

  46. Freund, R.W.: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13, 425–448 (1992). https://doi.org/10.1137/0913023

    Article  MathSciNet  MATH  Google Scholar 

  47. van der Vorst, H.A., Melissen, J.B.M.: A Petrov–Galerkin type method for solving \(Axk=b\), where \(A\) is symmetric complex. IEEE Trans. Magn. 26, 706–708 (1990). https://doi.org/10.1109/20.106415

    Article  Google Scholar 

  48. Sogabe, T., Zhang, S.-L.: A COCR method for solving complex symmetric linear systems. J. Comput. Appl. Math. 199, 297–303 (2007). https://doi.org/10.1016/j.cam.2005.07.032

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to editor and anonymous reviewers for their valuable suggestions and constructive comments which greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengge Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Science Foundation of China (No. 11901123), the Guangxi Natural Science Foundations (No. 2019AC20062, 2018JJB110062, 2021JJB110006, 2021AC19147), the Natural Science Foundation of Guangxi University for Nationalities (No. 2019KJQN001) and the Graduate Innovation Program of Guangxi University for Nationalities (No. gxun-chxs 2021056).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Huang, Z., Cui, J. et al. Two-parameter double-step scale splitting real-valued iterative method for solving complex symmetric linear systems. Japan J. Indust. Appl. Math. 40, 1125–1157 (2023). https://doi.org/10.1007/s13160-023-00569-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-023-00569-8

Keywords

Mathematics Subject Classification

Navigation