Skip to main content
Log in

Explicit pricing formulas for vulnerable path-dependent options with early counterparty credit risk

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A path-dependent option is an exotic option, the value of which relies on the path of an asset, as well as the price of the underlying asset throughout all or part of the life of the option. Since the global financial crisis, in the over-the-counter markets, recognizing the importance of credit default risk that arises from the option’s trade has become necessary to consider an early counterparty credit risk while deriving the option price. In this article, we obtain the explicit-closed form formula for the vulnerable path-dependent options with the early counterparty default risk, by utilizing the method of double images and the Mellin transform approach. Furthermore, we investigate the pricing accuracy of the option price by comparing our closed-form solutions with Monte Carlo prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Black, F., Cox, J.C.: Valuing corporate securities: some effects on bond indenture provisions. J. Finance 31, 351–367 (1976)

    Article  Google Scholar 

  2. Buchen, P.: Image options and the road to barriers. Risk Manage. 4(9), 127–130 (2001)

    Google Scholar 

  3. Buchen, P., Konstandatos, O.: A new approach to pricing double-Barrier options with arbitrary payoffs and exponential boundaries. Appl. Math. Finance 16(6), 497–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conze, A.: Viswanathan: path dependent options: the case of lookback option. J. Finance 46, 1893–1907 (1991)

    Article  Google Scholar 

  5. Dai, T.-S., Chiu, C.-Y.: Vulnerable option pricing: the dual problem. In: The 19th Conference on the Theories and Practices of Securities and Financial Market. December 9–10. National Sun Yat-sen University, Kaohsiung, Taiwan (2011)

  6. Dai, M., Wong, H.Y., Kwok, Y.K.: Quanto lookback options. Math. Finance 14, 445–467 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frontczak, R., Schöbel, R.: On modi ed Mellin transforms, Gauss–Laguerre quadrature, and the valuation of American call options. J. Comput. Appl. Math. 234(5), 1559–1571 (2010)

  8. Goldman, M.B., Sosin, H.B., Gatto, M.A.: Path dependent options: buy at the low, sell at the high. J. Finance 34, 1111–1127 (1979)

    Google Scholar 

  9. Hung, M.-W., Liu, Y.-H.: Pricing vulnerable options in incomplete markets. J. Futures Mark. 25(2), 135–170 (2005)

    Article  Google Scholar 

  10. Jarrow, R.A., Turnbull, S.M.: Pricing derivatives on financial securities subject to credit risk. J. Finance 50, 53–85 (1995)

    Article  Google Scholar 

  11. Jeon, J., Kim, G.: Pricing of vulnerable options with early counterparty credit risk. N. Am. J. Econ. Finance 47, 645–656 (2019)

    Article  Google Scholar 

  12. Jeon, J., Yoon, J.-H., Kang, M.: Valuing vulnerable geometric Asian options. Comput. Math. Appl. 71(2), 676–691 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jeon, J., Yoon, J.-H., Kang, M.: Pricing vulnerable path-dependent options using integral transforms. J. Comput. Appl. Math. 313, 259–272 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeon, J., Yoon, J.-H., Park, C.-R.: The pricing of dynamic fund protection with default risk. J. Comput. Appl. Math. 333, 116–130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, N.L., Kotz, S.: Continuous Multivariate Distributions. Wiley, New York (1972)

    MATH  Google Scholar 

  16. Johnson, H., Stulz, R.: The pricing of options with default risk. J. Finance 42, 267–280 (1987)

    Article  Google Scholar 

  17. Kim, D., Choi, S.-Y., Yoon, J.-H.: Pricing of vulnerable options under hybrid stochastic and local volatility. Chaos Solit. Fract. 146, 110846 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, D., Yoon, J.-H., Park, C.-R.: Pricing external barrier options under a stochastic volatility model. J. Comput. Appl. Math. 394, 113555 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, D., Kim, G., Yoon, J.-H.: Pricing of vulnerable exchange options with early counterparty credit risk. N. Am. J. Econ. Finance 59, 101624 (2022)

    Article  Google Scholar 

  20. Klein, P.: Pricing Black–Scholes options with correlated credit risk. J. Bank. Finance 50, 1211–1229 (1996)

    Article  Google Scholar 

  21. Klein, P., Yang, J.: Vulnerable American options. Manag. Finance 36(5), 414–430 (2010)

    Google Scholar 

  22. Liao, S.-L., Huang, H.-H.: Pricing Black–Scholes options with correlated interest rate risk and credit risk: an extension. Q. Finance 5(5), 443–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Madan, D.B., Unal, H.: Pricing the risks of default. Rev. Deriv. Res. 2, 121–160 (1998)

    Article  MATH  Google Scholar 

  24. Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4, 141–183 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29(2), 449–470 (1974)

    Google Scholar 

  26. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, New York (2003)

    Book  MATH  Google Scholar 

  27. Panini, R., Srivastav, R.P.: Option pricing with Mellin transforms. Math. Comput. Model. 40, 43–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reiner, E., Rubinstein, M.: Breaking down the barriers. Risk 4, 28–35 (1991)

    Google Scholar 

  29. Yang, S.-J., Lee, M.-K., Kim, J.-H.: Pricing vulnerable options under a stochastic volatility model. Appl. Math. Lett. 34, 7–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yoon, J.-H., Kim, J.-H.: The pricing of vulnerable options with double Mellin transforms. J. Math. Anal. Appl. 422(2), 838–857 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hun Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research by J.-H. Yoon was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2022R1A5A1033624).

Appendix A: Benchmark solutions for VBOEDR and VLOEDR

Appendix A: Benchmark solutions for VBOEDR and VLOEDR

Remark 2

(Appendix A.1.) (Benchmark solution for VBOEDR) The pricing formula of vulnerable down-and-out put option \(\textrm{VBO}(t,x,v)\) is given by

$$\begin{aligned} \begin{aligned} \textrm{VBO}(t,x,v)&= Ke^{-r(T-t)}\bigg (\Phi _2(\Lambda _{x/B}^{+-}, \Lambda _{v/D^*}^{+-}; \rho ) - \Phi _2(\Lambda _{x/K}^{+-}, \Lambda _{v/D^*}^{+-}; \rho ) \bigg ) \\&\quad -x \bigg (\Phi _2(\Lambda _{x/B}^{++}, \Lambda _{v/D^*}^{+-} + \rho \sigma _X \sqrt{T-t} ; \rho ) \\&\quad - \Phi _2( \Lambda _{x/K}^{++} + \rho \sigma _X \sqrt{T-t} , \Lambda _{v/D^*}^{+-}+\ \rho \sigma _X \sqrt{T-t} ;\rho ) \bigg ) \\&\quad + K \delta v \bigg ( \Phi _2 ( \Lambda _{x/B}^{+-}+ \rho \sigma _V \sqrt{T-t}, \Lambda _{D^*/v}^{-+}; -\rho ) \\&\quad - \Phi _2(\Lambda _{x/K}^{+-}+\rho \sigma _V \sqrt{T-t}, \Lambda _{D^*/v}^{-+}; -\rho ) \bigg ) \\&\quad - \delta e^{\rho \sigma _X \sigma _V + r }xv \bigg ( \Phi _2( \Lambda _{x/B}^{++}+\rho \sigma _V \sqrt{T-t}, \Lambda _{D^*/v}^{-+} - \rho \sigma _X \sqrt{T-t} ; - \rho )\\&\quad - \Phi _2( \Lambda _{x/K}^{++}+\rho \sigma _V \sqrt{T-t}, \Lambda _{D^*/v}^{-+} - \rho \sigma _X \sqrt{T-t} ; - \rho ) \bigg ). \end{aligned} \end{aligned}$$
(5.1)

Remark 3

(Appendix A.2.) (Benchmark solution for VLOEDR) The price of the vulnerable lookback option \(\textrm{VLO}=\textrm{VLO}(t,x,v,m)\) is given by

$$\begin{aligned} \begin{aligned} \textrm{VLO}&= me^{-r(T-t)} \Phi _2(\Lambda _{x/m}^{+-}, \Lambda _{D^*/v}^{--} ; -\rho ) - \delta xv \Phi _2(\Lambda _{x/m}^{++}, \Lambda _{D^*/v}^{--}-\rho \sigma _X \sqrt{T-t}; -\rho ) \\&\quad + \delta v(m \Phi _2(\Lambda _{m/x}^{--}-\rho \sigma _V \sqrt{T-t}, \Lambda _{v/D^*}^{++};-\rho ) \\&\quad - xe^{ \rho \sigma _X \sigma _V +r} \Phi _2(\Lambda _{m/x}^{-+}-\rho \sigma _V \sqrt{T-t}, \Lambda _{v/D^*}^{++} + \rho \sigma _X \sqrt{T-t}; \rho )) \\&\quad + \int \limits _1^\infty \left( \dfrac{x}{z}\right) ^{-(k_X-1)} m ^{k_X} \bigg [ e^{-r(T-t)} \Phi _2(\Lambda _{mz/x}^{+-}, \Lambda _{D^*/v}^{--}+\dfrac{2\rho }{\sigma _X \sqrt{T-t}} \ln \left( \dfrac{x}{mz} \right) ; -\rho ) \\&\quad - \delta v \Phi _2(\Lambda _{x/mz}^{--} -\rho \sigma _V \sqrt{T-t}, \Lambda _{v/D^*}^{++}- \dfrac{2 \rho }{\sigma _X \sqrt{T-t}} \ln \left( \dfrac{x}{z} \right) ; \rho ) \bigg ] {\textrm{d}} z. \end{aligned} \end{aligned}$$
(5.2)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Yoon, JH. Explicit pricing formulas for vulnerable path-dependent options with early counterparty credit risk. Japan J. Indust. Appl. Math. 40, 985–1013 (2023). https://doi.org/10.1007/s13160-022-00558-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00558-3

Keywords

Navigation