Skip to main content
Log in

The momentum conservative scheme for simulating nonlinear wave evolution and run-up in U-shaped bays

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates a previously developed numerical algorithm; the scheme solves Saint-Venant type equations as a quasi-1-dimensional model for wave dynamics in U-bays. The first validation uses the N-wave initial surface in a parabolic bay; numerical surface and horizontal velocity on the shoreline agree well with analytical results. Furthermore, simulation of N-wave shoaling phenomenon in a parabolic bay agree well with the analytical run-up and run-down heights. In the wind set-up and set-down simulations, numerical results show good agreement with analytical prediction in terms of surface elevation and velocity at the shoreline. Next, we discuss general U-bays with two types of influx: solitary and monochromatic waves; good agreement with analytical formula is obtained for U-bays with various m. All of the preceding observations indicates the robustness of our momentum conserving staggered-grid (MCS) scheme to describe wave dynamics in U-bays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Anderson, D., Harris, M., Hartle, H., Nicolsky, D., Pelinovsky, E., Raz, A., Rybkin, A.: Run-up of long waves in piecewise sloping U-shaped bays. Pure Appl. Geophys. 174(8), 3185–3207 (2017). https://doi.org/10.1007/s00024-017-1476-3

    Article  Google Scholar 

  2. Bueler-Faudree, T., Delamere, S., Dutykh, D., Rybkin, A., Suleimani, A.: Fast shallow water-wave solver for plane inclined beaches. SoftwareX 17, 100983 (2022)

    Article  Google Scholar 

  3. Choi, B.H., Pelinovsky, E., Kim, D., Didenkulova, I., Woo, S.B.: Two-and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Process. Geophys. 15(3), 489–502 (2008). https://doi.org/10.5194/npg-15-489-2008

    Article  Google Scholar 

  4. Didenkulova, I., Pelinovsky, E.: Non-dispersive traveling waves in inclined shallow water channels. Phys. Lett. A 373(42), 3883–3887 (2009). https://doi.org/10.1016/j.physleta.2009.08.051

    Article  MATH  Google Scholar 

  5. Didenkulova, I., Pelinovsky, E.: Nonlinear wave evolution and runup in an inclined channel of a parabolic cross-section. Phys. Fluids 23(8), 086602 (2011). https://doi.org/10.1063/1.3623467

    Article  Google Scholar 

  6. Didenkulova, I., Pelinovsky, E.: Runup of tsunami waves in U-shaped bays. Pure Appl. Geophys. 168(6–7), 1239–1249 (2011). https://doi.org/10.1007/s00024-010-0232-8

    Article  Google Scholar 

  7. Fritz, H.M., Phillips, D.A., Okayasu, A., Shimozono, T., Liu, H., Mohammed, F., Skanavis, V., Synolakis, C.E., Takahashi, T.: The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys. Res. Lett. (2012). https://doi.org/10.1029/2011GL050686

    Article  Google Scholar 

  8. Garayshin, V., Harris, M.W., Nicolsky, D., Pelinovsky, E., Rybkin, A.: An analytical and numerical study of long wave run-up in U-shaped and V-shaped bays. Appl. Math. Comput. 279, 187–197 (2016). https://doi.org/10.1016/j.amc.2016.01.005

    Article  MathSciNet  MATH  Google Scholar 

  9. Ginting, M., Pudjaprasetya, S., Adytia, D., Wiryanto, L.: Transparent boundary condition for the momentum conservative scheme of the shallow water equations. In: IOP Conf. Ser.: Earth Environ. Sci., vol. 618, p. 012007. IOP Publishing (2020). https://doi.org/10.1088/1755-1315/618/1/012007

  10. Golinko, V., Osipenko, N., Pelinovsky, E., Zahibo, N.: Tsunami wave runup on coasts of narrow bays. Int. J. Fluid Mech. Res. (2006). https://doi.org/10.1615/InterJFluidMechRes.v33.i1.70

    Article  Google Scholar 

  11. Harris, M., Nicolsky, D., Pelinovsky, E., Pender, J., Rybkin, A.: Run-up of nonlinear long waves in U-shaped bays of finite length: analytical theory and numerical computations. J. Ocean Eng. Mar. Energy 2(2), 113–127 (2016). https://doi.org/10.1007/s40722-015-0040-4

    Article  Google Scholar 

  12. Harris, M., Nicolsky, D., Pelinovsky, E., Rybkin, A.: Runup of nonlinear long waves in trapezoidal bays: 1-d analytical theory and 2-d numerical computations. Pure Appl. Geophys. 172(3–4), 885–899 (2015). https://doi.org/10.1007/s00024-014-1016-3

    Article  Google Scholar 

  13. Heidarzadeh, M., Muhari, A., Wijanarto, A.B.: Insights on the source of the 28 september 2018 sulawesi tsunami, indonesia based on spectral analyses and numerical simulations. Pure Appl. Geophys. 176(1), 25–43 (2019). https://doi.org/10.1007/s00024-018-2065-9

    Article  Google Scholar 

  14. Pelinovsky, E., Troshina, E.: Propagation of long waves in straits. Phys. Oceanogr. 5(1), 43–48 (1994). https://doi.org/10.1007/BF02197568

    Article  Google Scholar 

  15. Pudjaprasetya, S., Adytia, D., Subasita, N.: Analysis of bay bathymetry elements on wave amplification: a case study of the tsunami in Palu Bay. Coast. Eng. J. 63(4), 433–445 (2021)

    Article  Google Scholar 

  16. Pudjaprasetya, S., Magdalena, I.: Momentum conservative scheme for dam break and wave run up simulations. East Asian J. Appl. Math. 4(2), 152–165 (2014). https://doi.org/10.4208/eajam.290913.170314a

    Article  MathSciNet  MATH  Google Scholar 

  17. Pudjaprasetya, S., Mene Risriani, V., Iryanto, I.: Numerical simulation of propagation and run-up of long waves in U-shaped bays. Fluids 6, 146 (2021). https://doi.org/10.3390/fluids6040146

    Article  Google Scholar 

  18. Rybkin, A., Pelinovsky, E., Didenkulova, I.: Nonlinear wave run-up in bays of arbitrary cross-section: generalization of the Carrier–Greenspan approach. J. Fluid Mech. 748, 416–432 (2014). https://doi.org/10.1017/jfm.2014.197

    Article  MathSciNet  MATH  Google Scholar 

  19. Shimozono, T.: Long wave propagation and run-up in converging bays. J. Fluid Mech. 798, 457–484 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shimozono, T.: Kernel representation of long-wave dynamics on a uniform slope. Proc. R. Soc. A 476(2241), 20200333 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shimozono, T.: Tsunami propagation kernel and its applications. Nat. Hazards Earth Syst. Sci. 21(7), 2093–2108 (2021)

    Article  Google Scholar 

  22. Swastika, P.V., Pudjaprasetya, S.R., Wiryanto, L.H., Hadiarti, R.N.: A momentum-conserving scheme for flow simulation in 1d channel with obstacle and contraction. Fluids 6(1), 26 (2021). https://doi.org/10.3390/fluids6010026

    Article  Google Scholar 

  23. Zahibo, N., Pelinovsky, E., Talipova, T., Kozelkov, A., Kurkin, A.: Analytical and numerical study of nonlinear effects at tsunami modeling. Appl. Math. Comput. 174(2), 795–809 (2006). https://doi.org/10.1016/j.amc.2005.05.014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from Institut Teknologi Bandung and Indonesian Research Grant contract number 5S/IT1.C02/TA.00/2022 are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Redjeki Pudjaprasetya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudjaprasetya, S.R., Sulvianuri, R. The momentum conservative scheme for simulating nonlinear wave evolution and run-up in U-shaped bays. Japan J. Indust. Appl. Math. 40, 737–754 (2023). https://doi.org/10.1007/s13160-022-00549-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00549-4

Keywords

Mathematics Subject Classification

Navigation