Abstract
Hele-Shaw flows with time-dependent gaps create fingering patterns, and magnetic fluids in Hele–Shaw cells create intriguing patterns. We propose a simple numerical method for Hele–Shaw type problems by the method of fundamental solutions. The method of fundamental solutions is one of the mesh-free numerical solvers for potential problems, which provides a highly accurate approximate solution despite its simplicity. Moreover, the numerical method satisfies the volume-preserving property combining with the asymptotic uniform distribution method. We use Amano’s method to arrange the singular points in the method of fundamental solutions. We show several numerical results to exemplify the effectiveness of our numerical scheme.
Similar content being viewed by others
References
Amano, K., Okano, D., Ogata, H., Sugihara, M.: Numerical conformal mappings onto the linear slit domain. Jpn. J. Ind. Appl. Math. 29(2), 165–186 (2012)
Barnett, A., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–7026 (2008)
Cowley, M., Rosensweig, R.: The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30, 671–688 (1967)
Dockery, J., Klapper, I.: Finger formation in biofilm layers. SIAM J. Appl. Math. 62(3), 853–869 (2001/02)
Elias, F., Flament, C., Bacri, J.C., Neveu, S.: Macro-organized patterns in ferrofluid layer: Experimental studies. Journal de Physique I 7(5), 711–728 (1997)
Gustafsson, B., Vasil’ev, A.: Conformal and potential analysis in Hele-Shaw cells. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2006)
Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2010). Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition
Hele-Shaw, H.S.: The flow of water. Nature 58, 34–36 (1898)
Hou, T., Lowengrub, J., Shelley, M.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114(2), 312–338 (1994)
Howison, S.: Fingering in Hele-Shaw cells. J. Fluid Mech. 167, 439–453 (1986)
Katsurada, M.: Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(3), 635–657 (1990)
Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method. I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35(3), 507–518 (1988)
Kemmochi, T.: Energy dissipative numerical schemes for gradient flows of planar curves. BIT 57(4), 991–1017 (2017)
Lamb, H.: Hydrodynamics, sixth edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993). With a foreword by R. A. Caflisch [Russel E. Caflisch]
Mikula, K., Ševčovič, D.: A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27(13), 1545–1565 (2004)
Mikula, K., Ševčovič, D.: Evolution of curves on a surface driven by the geodesic curvature and external force. Appl. Anal. 85(4), 345–362 (2006)
Otto, F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Rational Mech. Anal. 141(1), 63–103 (1998)
Rosensweig, R.: Magnetic fluids. Annu. Rev. Fluid Mech
Rosensweig, R., Zahn, M., Shumovich, R.: Labyrinthine instability in magnetic and dielectric fluids. J. Magn. Magn. Mater. 39(1–2), 127–132 (1983)
Saffman, P., Taylor, G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245, 312–329 (1958). ((2 plates))
Sakakibara, K.: Asymptotic analysis of the conventional and invariant schemes for the method of fundamental solutions applied to potential problems in doubly-connected regions. Jpn. J. Ind. Appl. Math. 34(1), 177–228 (2017)
Sakakibara, K.: Bidirectional numerical conformal mapping based on the dipole simulation method. Eng. Anal. Bound. Elem. 114, 45–57 (2020)
Sakakibara, K., Miyatake, Y.: A fully discrete curve-shortening polygonal evolution law for moving boundary problems. J. Comput. Phys. 424, 109857,22 (2021)
Sakakibara, K., Yazaki, S.: Structure-preserving numerical scheme for the one-phase Hele-Shaw problems by the method of fundamental solutions. Comput. Math. Methods 1(6), e1063,25 (2019)
Ševčovič, D., Yazaki, S.: Evolution of plane curves with a curvature adjusted tangential velocity. Jpn. J. Ind. Appl. Math. 28(3), 413–442 (2011)
Ševčovič, D., Yazaki, S.: On a gradient flow of plane curves minimizing the anisoperimetric ratio. IAENG Int. J. Appl. Math. 43(3), 160–171 (2013)
Shelley, M., Tian, F.R., Wlodarski, K.: Hele-Shaw flow and pattern formation in a time-dependent gap. Nonlinearity 10(6), 1471–1495 (1997)
Tanveer, S.: Surprises in viscous fingering. J. Fluid Mech. 409, 273–308 (2000)
Tatulchenkov, A., Cebers, A.: Magnetic fluid labyrinthine instability in Hele-Shaw cell with time dependent gap. Phys. Fluids 20(5), 054101,10 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Sakakibara, K., Shimoji, Y. & Yazaki, S. A simple numerical method for Hele–Shaw type problems by the method of fundamental solutions. Japan J. Indust. Appl. Math. 39, 869–887 (2022). https://doi.org/10.1007/s13160-022-00530-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13160-022-00530-1
Keywords
- Hele–Shaw flow
- Magnetic fluid
- Time-dependent gap
- The method of fundamental solutions
- Amano’s method
- Volume-preserving property