Skip to main content
Log in

CSSg method for several genericities of parametric systems

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A new framework for treating several genericities of parametric systems is proposed. A computational method (CSSg) of comprehensive standard system over a field of rational functions is introduced as a key tool. As application to singularity theory, algorithms of computing parameter dependency of \(\kappa\)-invariants and local Euler obstructions for parametric cases are given. Furthermore, \(\kappa\)-invariants associated to \(\mu\)-constant deformations are given by using the resulting algorithm. As another application, an algorithm of computing Hilbert–Samuel multiplicities of parametric ideals is provided to show the versatility of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brieskorn, E.: Vue d’ensemble sur les problèmes de monodromie. Astérisque 7–8, 393–413 (1973)

  2. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge (1993)

  3. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016)

  4. Grassmann, H., Greuel, G.-M., Martin, B., Neumann, W., Pfister, G., Pohl, W., Schönemann, H., T. Siebert: Standard bases, syzygies and their implementation in Singular. Reports on Computer Algebra, vol. 1. Zentrum für Computer algebra. Univ, Kaiserslautern (1996)

  5. Greuel und Lê Dũng Tráng, G.-M.: Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchshnitten. Math. Ann. 222, 71–88 (1976)

  6. Greuel, G.-M.: Die Zahl der Spitzen und die Jacobi-Algebra einer isolierten Hyperflächensingularität. Manuscr. Math. 21, 227–241 (1977)

  7. Greuel, G.-M.: Ergänzung und Berichtigung zu: Die Zahl der Spitzen und die Jacobi-Algebra einer isolierten Hyperflächensingularität. Manuscr. Math. 25, 205–208 (1978)

  8. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd ed. Springer (2007)

  9. Hashemi, A., Kazemi, M.: Parametric standard bases and their applications. In: Proc. CASC 2019, Lect. Notes Comp. Sci., vol. 11661, 179–196. Springer (2019). https://doi.org/10.1007/978-3-030-26831-2_13

  10. Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. Springer (1988)

  11. Iversen et Lê Dũng Tráng, B.: Calcul du nombre de cusps dans la déformation semi-universelle d’une singularité isolée d’hypersurface complexe. Bull. S. M. France 102, 99–107 (1974). https://doi.org/10.24033/bsmf.1772

  12. Kalkbrener, M.: On the stability of Gröbner bases under specializations. J. Symb. Comp. 24, 51–58 (1997). https://doi.org/10.1006/jsco.1997.0113

    Article  MathSciNet  MATH  Google Scholar 

  13. Kapur, D., Sun, Y., Wang, D.: An efficient method for computing comprehensive Gröbner bases. J. Symb. Comp. 49, 124–142 (2013). https://doi.org/10.1016/j.jsc.2011.12.015

    Article  MATH  Google Scholar 

  14. Kashiwara, M.: Index theorem for maximally overdetermined systems of linear differential equations. Proc. Japan Acad. 49, 803–804 (1973). https://doi.org/10.3792/pja/1195519148

    Article  MathSciNet  MATH  Google Scholar 

  15. Lê Dũng Tráng, Ramanujam, C.P.: The invariance of Milnor’s number implies the invariance of the topological type. Am. J. Math. 98, 67–78 (1976). https://doi.org/10.2307/2373614

  16. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comp. 33, 183–208 (2002). https://doi.org/10.1006/jsco.2001.0504

    Article  MATH  Google Scholar 

  17. Mora, T.: An algorithm to compute the equations of tangent cones. In: Proc. EUROCAM 82, LNCS, vol. 144, pp. 158–165. Springer (1982). https://doi.org/10.1007/3-540-11607-9_18

  18. Mora, T., Phister, G., Traverso, T.: An introduction to the tangent cone algorithm. Adv. in Computing Research, Issued in Robotics and Nonlinear Geometry, vol. 6, pp. 199–270 (1992)

  19. Mora, T., Rossi, M.E.: An algorithm for the Hilbert-Samuel function of a primary ideal. Commun. Algebra 23, 1899–1911 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC’2014), pp. 351–358 (2014). https://doi.org/10.1145/2608628.2608639

  21. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comp. 82, 91–122 (2017). https://doi.org/10.1016/j.jsc.2017.01.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic \(\mu ^\ast \)-sequences and local Euler obstructions of isolated hypersurface singularities. J. Algebra Appl. (2019). https://doi.org/10.1142/S0219498819501561

    Article  MathSciNet  MATH  Google Scholar 

  23. Northcott, D.G.: Lectures on Rings, Modules, and Multiplicities. Cambridge (1968)

  24. Pham, F.: Courbes discriminantes des singularités planes d’ordre 3. Astérisque 7–8, 363–392 (1973)

  25. Rees, D.: \({{\cal{A}}}\)-transforms of local rings and a theorem on multiplicities of ideals. Proc. Camb. Philos. Soc. 57, 8–17 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Samuel, P.: La notion de multiplicité en algèbre et en géométrie algébrique. J. Math. Pures Appl. 30, 159–275 (1951)

    MathSciNet  MATH  Google Scholar 

  27. Serre, J.P.: Algèbre Locale, Multiplicités, Lecture Notes in Math., vol. 11. Springer (1965)

  28. Shibuta, T., Tajima, S.: An algorithm for computing the Hilbert–Samuel multiplicities and reductions of zero-dimensional ideals of Cohen–Macaulay local rings. J. Symb. Comp. 96, 108–121 (2020). https://doi.org/10.1016/j.jsc.2019.02.014

    Article  MathSciNet  MATH  Google Scholar 

  29. Spangher, W.: On the computation of Hilbert–Samuel series and multiplicity. Lect. Notes Comp. Sci., vol. 356, 407–414. Springer (1989). https://doi.org/10.1007/3-540-51083-4_76

  30. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. J. Symb. Comp. 36, 649–667 (2003). https://doi.org/10.1016/S0747-7171(03)00098-1

    Article  MATH  Google Scholar 

  31. Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. Cambridge (2006)

  32. Teissier, B.: Cycles évanescentes, sections planes, et conditions de Whitney. Astérisque 7–8, 285–362 (1973)

  33. Teramoto, H., Nabeshima, K.: Parametric standard system for mixed module and its application to singularity theory. In: Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC’ 2020), pp. 426–433 (2020). https://doi.org/10.1145/3373207.3404027

  34. Varchenko, A.N.: A lower bound for the codimension of the \( \mu =\)const stratum in terms of the mixed Hodge structure. Moscow Univ. Math. Bull. 37, 30–33 (1982)

    MATH  Google Scholar 

  35. Yoshinaga, E., Suzuki, M.: Normal forms of non-degenerate quasihomogeneous functions with inner modality \(\le 4\). Invent. Math. 55, 185–206 (1979). https://doi.org/10.1007/BF01390090

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly supported by JSPS Grant-in-Aid for Science Research (C) (18K03320 and 18K03214).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabeshima, K., Tajima, S. CSSg method for several genericities of parametric systems. Japan J. Indust. Appl. Math. 40, 315–337 (2023). https://doi.org/10.1007/s13160-022-00520-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00520-3

Keywords

Mathematics Subject Classification

Navigation