Skip to main content
Log in

Experimental and numerical investigation of air flow through the distributor plate in a laboratory-scale model of a bubbling fluidized bed boiler

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In fluidized bed boilers, the distributor plate is a perforated metal plate which forms the bottom of the combustion chamber and separates it from the windbox. It prevents the fluidized granular material from falling through. At the same time, it allows an even distribution of the fluidization air which flows through the small holes. In this contribution, we consider an experimental model of the fluidized bed boiler and study the dependence of pressure drop at the distributor plate on the air flow rate. Numerical simulations of turbulent flow through the detailed three-dimensional geometry of the device are compared to experimental measurements. Two different simulation tools are used: our in-house high performance GPU solver based on the lattice Boltzmann method (LBM) and the ANSYS Fluent CFD software based on the finite volume method (FVM). The accuracy of both methods is strongly dependent on the mesh/lattice resolution inside (and in the vicinity of) the small holes of the distributor plate. When similar resolutions are used, FVM provides more accurate results than the original LBM scheme. However, the accuracy of LBM can be significantly improved by changing the parameters of the collision model so that it outperforms FVM. A simple convergence study of all involved numerical methods indicates improvement of the results with mesh/lattice refinement. In addition, LBM uses a structured lattice with the same resolution in the whole domain, which allows it to provide a detailed information on the non-uniformity of the velocity field above the distributor plate. The obtained results can be utilized to design a simplified model of the distributor plate for the purpose of complex CFD simulations of multiphase flow and combustion in fluidized bed boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Afrooz, I.E., Sinnathambi, C.M., Karuppanan, S., Ching, D.L.C.: CFD simulation of bubbling fluidized bed: effect of distributor plate orifice pattern configuration on hydrodynamics of gas-solid mixing. ARPN J. Eng. Appl. Sci. 11(20), 11954–11959 (2016)

    Google Scholar 

  2. Andrews, M.J., O’Rourke, P.J.: The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. Multiphase Flow 22(2), 379–402 (1996)

    Article  MATH  Google Scholar 

  3. Basu, P.: Combustion and Gasification in Fluidized Beds. CRC Press (2006)

  4. Beneš, M., Eichler, P., Klinkovský, J., Kolář, M., Smejkal, T., Solovský, J., Strachota, P., Žák, A., Hrdlička, J., Skopec, P.: CFD simulation and experimental analysis of fluidization in a model of an oxyfuel fluidized bed boiler. In: P. Frolkovič, K. Mikula, D. Ševčovič (eds.) ALGORITMY 2020, 21th Conference on Scientific Computing, Vysoké Tatry - Podbanské, Slovakia, September 10 - 15, 2020. Proceedings of contributed papers and posters, pp. 101–110. SPEKTRUM STU (2020)

  5. Beneš, M., Eichler, P., Klinkovský, J., Kolář, M., Solovský, J., Strachota, P., Žák, A.: Modeling and simulation of bed dynamics in oxyfuel fluidized bed boilers. In: F.J. Vermolen, C. Vuik (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2019, Lecture Notes in Computational Science and Engineering, vol. 139, pp. 919–927. Springer International Publishing (2021). https://doi.org/10.1007/978-3-030-55874-1_91

  6. Beneš, M., Eichler, P., Klinkovský, J., Kolář, M., Solovský, J., Strachota, P., Žák, A.: Numerical simulation of fluidization for applications in oxyfuel combustion. Discrete. Cont. Dyn. S. S 14(3), 769–783 (2021)

  7. Beugre, D., Calvo, S., Dethier, G., Crine, M., Toye, D., Marchot, P.: Lattice Boltzmann 3D flow simulations on a metallic foam. J. Comput. Appl. Math. 234, 2128–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eichler, P., Fučík, R., Straka, R.: Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete. Cont. Dyn. S. S 14(3), 819–833 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Eichler, P., Fuka, V., Fučík, R.: Cumulant lattice Boltzmann simulations of turbulent flow above rough surfaces. Comput. Math. Appl. 92, 37–47 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fučík, R., Eichler, P., Straka, R., Pauš, P., Klinkovský, J., Oberhuber, T.: On optimal node spacing for immersed boundary-lattice Boltzmann method in 2D and 3D. Comput. Math. Appl. 77(4), 1144–1162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion Part II: application to flow around a sphere at drag crisis. J. Comput. Phys. 348, 889–898 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in three dimensions: theory and validation. Comput. Math. Appl. 70(4), 507–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Z., Shu, C.: Lattice Boltzmann method and its applications in engineering, vol. 3. World Scientific (2013)

  14. Kang, S.K., Hassan, Y.A.: The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows. J. Comput. Phys. 232(1), 100–117 (2013)

    Article  MathSciNet  Google Scholar 

  15. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The lattice Boltzmann method - Principles and practice. Graduate Texts in Physics. Springer (2017)

  16. Kumar, P., Kutscher, K., Mößner, M., Radespiel, R., Krafczyk, M., Geier, M.: Validation of a VRANS-model for turbulent flow over a porous flat plate by cumulant lattice Boltzmann DNS/LES and experiments. J. Porous Media 21(5) (2018)U

  17. O’Rourke, P.J., Snider, D.M.: An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chem. Eng. Sci. 65(22), 6014–6028 (2010)

    Article  Google Scholar 

  18. Peng, C., Geneva, N., Guo, Z., Wang, L.P.: Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method. J. Comput. Phys. 357, 16–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raza, N., Ahsan, M., Mehran, M.T., Naqvi, S.R., Ahmad, I.: Computational analysis of the hydrodynamic behavior for different air distributor designs of fluidized bed gasifier. Front. Energy Res. 9, 692066 (2021)

    Article  Google Scholar 

  20. Snider, D.M., O’Rourke, P.J., Andrews, M.J.: An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows. Tech. rep., Los Alamos National Lab., NM (United States) (1997)

  21. Snider, D.M., O’Rourke, P.J.: The multiphase particle-in-cell (MP-PIC) method for dense particle flow. In: Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice, pp. 277–314. IGI Global (2011)

  22. Yang, W.C. (ed.): Handbook of Fluidization and Fluid-Particle Systems. Marcel Dekker (2003)

  23. Zheng, L. (ed.): Oxy-fuel combustion for power generation and carbon dioxide (\(\text{CO}_{2}\)) capture. Woodhead Publishing (2011)

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the OP RDE grant number CZ.02.1.01/0.0 /0.0/16_019/0000753 “Research centre for low-carbon energy technologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Strachota.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beneš, M., Eichler, P., Fučík, R. et al. Experimental and numerical investigation of air flow through the distributor plate in a laboratory-scale model of a bubbling fluidized bed boiler. Japan J. Indust. Appl. Math. 39, 943–958 (2022). https://doi.org/10.1007/s13160-022-00518-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00518-x

Keywords

Mathematics Subject Classification

Navigation