Skip to main content
Log in

A least squares approach for saddle point problems

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Saddle point linear systems arise in many applications in computational sciences and engineering such as finite element approximations to Stokes problems, image reconstructions, tomography, genetics, statistics, and model order reductions for dynamical systems. In this paper, we present a least-squares approach to solve saddle point linear systems. The basic idea is to construct a projection matrix and transform a given saddle point linear system to a least-squares problem and then solve the least-squares problem by an iterative method such as LSMR: an iterative method for sparse least-squares problems. The proposed method rivals LSMR applied to the original problem in simplicity and ease to use. Numerical experiments demonstrate that the new iterative method is efficient and converges fast

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Estrin, R., Greif, C.: On nonsingular saddle-point systems with a maximally rank deficient leading block. SIAM J. Matrix Anal. Appl. 36(2), 367–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fong, D.C., Saunders, M.A.: LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci. Comput. 33(5), 2950–2971 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2, 205–224 (1965)

    MathSciNet  MATH  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    Book  MATH  Google Scholar 

  8. Maryska, J., Rozlozník, M., Tuma, M.: The potential fluid problem and the convergence rate of the minimum residual method. Numer. Linear Algebra Appl. 3, 525–542 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pearson, J.W., Pestana, J., Silvester, D.J.: Refined saddle-point preconditioners for discretized Stokes problems. Numer. Math. 138(2), 331–363 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pestena, J., Rees, T.: Null-space preconditioners for saddle point systems. SIAM J. Matrix Anal. Appl. 37(3), 1103–1128 (2015)

    Article  MathSciNet  Google Scholar 

  13. Reid, N.: Saddle point methods and statistical inference. Statist. Sci. 3(2), 213–227 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Song, Y., Yuen, X., Yue, H.: An inexact Uzawa algorithmic framework for nonlinear saddle point problems with applications to elliptic optimal control problem. SIAM J. Numer. Anal. 57(6), 2656–2684 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, S.L., Salkuyeh, D.: A shift-splitting preconditioner for asymmetric saddle point problems. Comput. Appl. Math. 39(4), 314 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, A.L., Li, X., Wu, Y.J.: On semi-convergence of the uzawa-hss method for singular saddle-point problems. Appl. Math. Comput. 252, 88–98 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments and suggestions that improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gul Karaduman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by NSF grants DMS-1719620 and DMS-2009689.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaduman, G., Yang, M. & Li, RC. A least squares approach for saddle point problems. Japan J. Indust. Appl. Math. 40, 95–107 (2023). https://doi.org/10.1007/s13160-022-00509-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00509-y

Keywords

Navigation