Skip to main content
Log in

Mean value theorems for the noncausal stochastic integral

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 06 September 2022

This article has been updated

Abstract

We are concerned with the validity of the mean value theorem for the noncausal stochastic integral \(\int _s^t f(X_r)d_*W_r\) with respect to Brownian motion \(W_t(\omega )\), where \(X_t\) is an Itô process. We establish first a mean value theorem for the noncausal stochastic integral \(\int _s^t f(X_r)dX_r\) and based on the result we show the corresponding formulae for the noncausal integral \(\int _s^t f(X_r)d_*W_r\) or for Itô integral \(\int _s^t f(X_r)d_0W_r\) as well. We also study the problem for such a genuin noncausal case where the process \(X_t\) is noncausal, that is, not adapted to the natural filtration associated to Brownian motion. The discussions are developed in the framework of the noncausal calculus. Hence some materials and basic facts in the theory of noncausal stochastic calculus are briefly reviewed as preliminary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Itô, K., Nisio, M.: On the convergence of sum of independent Banach space valued random variables. Osaka J. Math. 5, 35–48 (1968)

    MathSciNet  MATH  Google Scholar 

  2. Krylov, N.V.: Mean value theorems for stochastic integrals. Ann. Probab. 29(1), 385–410 (2001)

    Article  MathSciNet  Google Scholar 

  3. Ogawa, S.: Noncausal problems in stochastic caculus, (in japanses) Proc. of Workshop on "Noncausal Calculus and Related Problems", RIMS Publications vol. 527, pp.1–25 (1984), Kyoto Univ

  4. Ogawa, S.: Noncausal Stochastic Calculus. (monograph) Springer: August. (2017). https://doi.org/10.1007/978-4-431-56576-5

  5. Ogawa, S.: On a Riemann definition of the stochastic integral, (II). Proc. Jpn. Acad. 46, 158–161 (1970)

    Article  MathSciNet  Google Scholar 

  6. Ogawa, S.: On a Riemann definition of the stochastic integral, (I). Proc. Jpn. Acad. 46, 153–157 (1970)

    Article  MathSciNet  Google Scholar 

  7. Ogawa, S.: A partial differential equation with the white noise as a coefficient. Z. W. verw. Geb. 28, 53–71 (1973). (Springer Verlag)

    Article  MathSciNet  Google Scholar 

  8. Ogawa, S.: Sur le produit direct du bruit blanc par lui-même. Comptes Rendus Acad. Sci. Paris t.288, 359–362 (1979)

    MATH  Google Scholar 

  9. Ogawa, S.: Sur la question d’existence des solutions d’une equation différentielle stochastique du type noncausal. J. Math. Kyoto Univ. 24(4), 699–704 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Ogawa, S.: The stochastic integral of noncausal type as an extension of the symmetric integrals. Jpn. J. Appl. Math. 2(1), 229–240 (1985). (Kinokuniya)

    Article  MathSciNet  Google Scholar 

  11. Ogawa, S., Sekiguchi, T.: On the noncausal Itô formula. Proc. Jpn. Acad. 60(7), 249–251 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyoshi Ogawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to correct the theorem numbers

Appendix—List of classes of random functions

Appendix—List of classes of random functions

By a random function \(f(t,\omega )\) we understand a real function such that \(P\{\int _0^T f^2(t,\omega )dt<\infty \}=1\). Here are the symbols for various classes of random functions.

\(\mathbf{H}\): totality of random functions, \(\mathbf{M}\): totality of causal functons,

\(\mathbf{H}_{bv}\): totality of random functions whose sample functions are almost surely of bounded variation on [0, T], \(\mathbf{M}_{bv}=\mathbf{M}\cap \mathbf{H}_{bv}\).

By an Itô process we mean such a random function \(f(t,\omega )\) that admits the following decomposition; \(df_t=a(t,\omega )d_0W_t + db(t,\omega ), \ \ a(t,\omega ) \in \mathbf{M} \ \text{ and } \ b(\cdot ) \in \mathbf{M}_{bv}\), When \(b(\cdot ) \in \mathbf{H}_{bv}\) the \(f(t,\omega )\) is called quasi Itô process,

\(\mathbf{H}_Q\): totality of quasi Itô processes and \(\mathbf{M}_Q=\mathbf{H}_Q \cap \mathbf{M}\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, S. Mean value theorems for the noncausal stochastic integral. Japan J. Indust. Appl. Math. 39, 801–814 (2022). https://doi.org/10.1007/s13160-022-00508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00508-z

Keywords

Mathematics Subject Classification

Navigation