Skip to main content
Log in

On the efficiency of 5(4) RK-embedded pairs with high order compact scheme and Robin boundary condition for options valuation

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

When solving the American options with or without dividends, numerical methods often obtain lower convergence rates if further treatment is not implemented even using high-order schemes. In this article, we present a fast and explicit fourth-order compact scheme for solving the free boundary options. In particular, the early exercise features with the asset option and option sensitivity are computed based on a coupled of nonlinear PDEs with fixed boundaries for which a high order analytical approximation is obtained. Furthermore, we implement a new treatment at the left boundary by introducing a third-order Robin boundary condition. Rather than computing the optimal exercise boundary from the analytical approximation, we simply obtain it from the asset option based on the linear relationship at the left boundary. As such, a high order convergence rate can be achieved. We validate by examples that the improvement at the left boundary yields a fourth-order convergence rate without further implementation of mesh refinement, Rannacher time-stepping, and/or smoothing of the initial condition. Furthermore, we extensively compare the performance of our present method with several 5(4) Runge–Kutta pairs and observe that Dormand and Prince and Bogacki and Shampine 5(4) pairs are faster and provide more accurate numerical solutions. Based on numerical results and comparison with other existing methods, we can validate that the present method is very fast and provides more accurate solutions with very coarse grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material (data transparency)

The data could be shared at a reasonable request.

References

  1. Ballestra, L.V.: Fast and accurate calculation of American option prices. Decisions Econ. Finan. 41, 399–426 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogacki, P.: A family of Parallel Runge-Kutta Pairs. Comput. Math. Appl. 31, 23–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogacki, P., Shampine, L.F.: An efficient Runge-Kutta (4,5) pair. Comput. Math. Appl. 32, 15–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brennan, M., Schwartz, E.: The valuation of American put options. J. Fin. 32, 449–462 (1997)

    Article  Google Scholar 

  6. Cash, R.J., Karp, A.H.: A variable order Runge-Kutta for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16, 201–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cen, Z., Chen, W.: A HODIE finite difference scheme for pricing American options. Adv. Differ. Equ. (2019). https://doi.org/10.1186/s13662-018-1917-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Chadam, J.: A mathematical analysis of the optimal exercise boundary American put options. SIAM J. Math. Anal. 38, 1613–1641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christara, C.C., Dang, D.M.: Adaptive and high-order methods for valuing American options. J. Comput. Fin. 14, 73–113 (2011)

    Article  Google Scholar 

  10. Company, R., Egorova, V.N., Jódar, L.: A positive, stable, and consistent front-fixing numerical scheme for American options. In: Russo G., Capasso V., Nicosia G., Romano V. (eds) Progress in Industrial Mathematics at ECMI 2014. Mathematics in Industry, 22, 57–64 (2016)

  11. Company, R., Egorova, V.N., Jódar, L.: Solving American option pricing models by the front fixing method: numerical analysis and computing. Abstract Appl. Anal. (2014). https://doi.org/10.1155/2014/146745

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dormand, J.R., Prince, J.P.: A family of embedded Rung-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Egorova, V.N., Company, R., Jódar, L.: A new efficient numerical method for solving American option under regime switching model. Comput. Math. Appl. 71, 224–237 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fehlberg, E.: Low-order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems. NASA Tech. Rep. 315 (1969)

  16. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence of a penalty method for valuing American options. SIAM J. Sci. Comput. 23, 2096–2123 (2002)

    Article  MATH  Google Scholar 

  17. Goodman, J., Ostrov, D.N.: On the early exercise boundary of the American put option. J. SIAM Appl. Math. 62, 1823–1835 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hajipour, M., Malek, A.: Efficient high-order numerical methods for pricing option. Comput. Econ. 45, 31–47 (2015)

    Article  Google Scholar 

  19. Han, H., Wu, X.: A fast numerical method for the Black-Scholes equation for American options. SIAM J. Numer. Anal. 41, 2081–2095 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holmes, A.D., Yang, H.: A front-fixing finite element method for the valuation of American options. SIAM J. Sci. Comput. 30, 2158–2180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoover, W.G., Sprot, J.C., Hoover, C.G.: Adaptive Runge-Kutta integration for stiff systems: comparing Nose and Nose-Hoovers dynamics for the harmonic oscillator. Am. J. Phys. 84, 786 (2016)

    Article  Google Scholar 

  22. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809–814 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ketcheson, D.I., Mortenson, M., Parsani, M., Schilling, N.: More efficient time integration for Fourier pseudospectral DNS of incompressible turbulence. Int. J. Numer. Method. Fluids 92, 79–93 (2020)

    Article  MathSciNet  Google Scholar 

  24. Kim, B.J., Ma, Y., Choe, H.J.: A simple numerical method for pricing an American put option. J. Appl. Math. 2013, 128025 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kim, B.J., Ma, Y., Choe, H.J.: Optimal exercise boundary via intermediate function with jump risk. Jpn. J. Ind. Appl. Math. 34, 779–792 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leisen, D., Reimer, M.: Binomial models for option valuation—examining and improving convergence. Appl. Math. Fin. 3, 319–346 (1996)

    Article  Google Scholar 

  27. Macdougall, T., Verner, J.H.: Global error estimators for 7, 8 Runge-Kutta pairs. Numer. Algorithm 31, 215–231 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mallier, R.: Evaluating approximations to the optimal exercise boundary for American options. J. Appl. Math. 2, 71–92 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muthuraman, K.A.: moving boundary approach to American option pricing. J. Econ. Dyn. Control 32, 3520–3537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nielsen, B.F., Skavhaug, O., Tveito, A.: A penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Fin. 5, 69–97 (2002)

    Article  Google Scholar 

  31. Oosterlee, C.W., Leentvaar, C.C.W., Huang, X.: Accurate American option pricing by grid stretching and high order finite differences. Working Papers, DIAM. Delft University of Technology, Delft (2005)

    Google Scholar 

  32. Papakostas, S.N., Papageorgiou, G.: A family of fifth-order Runge-Kutta pairs. Math. Comput. 65, 1165–1181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pooley, D.M., Vetzal, K.R., Forsyth, P.A.: Convergence remedies for non-smooth payoffs in option pricing. J. Comput. Fin. 6, 25–40 (2003)

    Article  Google Scholar 

  34. Simos, T.E.: A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillation solution. Comput. Math. Appl. 25, 95–101 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simos, T.E., Papakaliatakis, G.: Modified Runge-Kutta Verner methods for the numerical solution of initial and boundary-value problems with engineering application. Appl. Math. Model. 22, 657–670 (1998)

    Article  MATH  Google Scholar 

  36. Simos, T.E., Tsitouras, C.: Fitted modifications of classical Runge-Kutta pairs of orders 5(4). Math. Method Appl. Sci. 41, 4549–4559 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, H., Zhang, K., Li, Y.: Finite element and discontinuous Galerkin methods with perfect matched layers for American options. Numer. Math. Theory Methods Appl. 10, 829–521 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tangman, D.Y., Gopaul, A., Bhuruth, M.: A fast high-order finite difference algorithm for pricing American options. J. Comput. Appl. Math. 222, 17–29 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tsitouras, C.: A parameter study of explicit Runge-Kutta pairs of orders 6(5). Appl. Math. Lett. 11, 65–69 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wilkie, J., Cetinbas, M.: Variable-stepsize Runge-Kutta for stochastic Schrodinger equations. Phys. Lett. A 337, 166–182 (2005)

    Article  MATH  Google Scholar 

  41. William, H.P., Saul, A.T.: Adaptive stepsize Runge-Kutta Integration. Comput. Phys. 6, 188 (1992)

    Article  Google Scholar 

  42. Wu, L., Kwok, Y.K.: A front-fixing method for the valuation of American options. J. Fin. Eng. 6, 83–97 (1997)

    Google Scholar 

  43. Yan, Y., Dai, W., Wu, L., Zhai, S.: Accurate gradient preserved method for solving heat conduction equations in double layers. Appl. Math. Comput. 354, 58–85 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, K., Song, H., Li, J.: Front-fixing FEMs for the pricing of American options based on a PML technique. Appl. Anal.: Int. J. 94, 1–29 (2014)

    MATH  Google Scholar 

  45. Zhao, J.: Highly accurate compact mixed method for two point boundary value problem. Appl. Math. Comput. 188, 1402–1418 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, J., Davidson, M., Corless, R.M.: Compact finite difference method for American option pricing. J. Comput. Appl. Math. 206, 306–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers for their invaluable comments and suggestions.

Funding

No funding was received from any resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinonso Nwankwo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwankwo, C., Dai, W. On the efficiency of 5(4) RK-embedded pairs with high order compact scheme and Robin boundary condition for options valuation. Japan J. Indust. Appl. Math. 39, 753–775 (2022). https://doi.org/10.1007/s13160-022-00507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00507-0

Keywords

Navigation