Skip to main content
Log in

An immersed hybrid difference method for the elliptic interface equation

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose an immersed hybrid difference (IHD) method for elliptic interface problems. An essential feature of the IHD method lies in the VR(virtual to real) transformation, which makes it possible to derive accurate finite difference approximations with functions of low regularity on interface cells. The VR transformation is consisting of the interface conditions in addition to the consistency equations, which are derived from the governing equation. The method is easy to be implemented and high order methods are conveniently derived. Numerical tests on several types of interfaces with low and high order methods are presented, which demonstrates efficiency of the IHD method. Numerical analysis for the one dimensional case is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adjerid, S., Ben-Romdhane, M., Lin, T.: Higher degree immersed finite element methods for second-order elliptic interface problems. Int. J. Numer. Anal. Modeling 11(2), 541–566 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Beale, A., Layton, A.T.: On the accuracy of finite difference methods for elliptic problems with interfaces. Comm. App. Math. Comp. 1, 91–119 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Bruno, O.P., Lyon, M.: High-order unconditionally stable fc-ad solvers for general smooth domains I. Basic elements. J. Comp. Phys. 229, 2009–2033 (2010)

    Article  MathSciNet  Google Scholar 

  4. Camp, B., Lin, T., Lin, Y., Sun, W.: Quadratic immersed finite element spaces and their approximation capabilities. Adv. Comp. Math. 24(4), 81–112 (2006)

    Article  MathSciNet  Google Scholar 

  5. Griffith, B.E., Peskin, C.S.: On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. J. Comp. Phys. 208(1), 75–105 (2005)

    Article  MathSciNet  Google Scholar 

  6. He, X.-M., Lin, T., Lin, Y.: A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Comm. Comp. Phys. 6(1), 185–202 (2009)

    Article  MathSciNet  Google Scholar 

  7. Huang, H., Li, Z.: Convergence analysis of the immersed interface method. IMA J. Numer. Anal. 19(4), 583–608 (1999)

    Article  MathSciNet  Google Scholar 

  8. Huang, H., Li, Z.: Convergence analysis of theimmersed interface method. IMAJ. Numer. Anal. 19, 583? – 608 (1999)

    Article  Google Scholar 

  9. Jeon, Y.: Hybrid difference methods for pdes. J. Sci. Comput. 64, 508–521 (2015)

    Article  MathSciNet  Google Scholar 

  10. Jeon, Y.: Hybrid spectral difference methods for elliptic equations on exterior domains with the discrete radial absorbing boundary condition. J. Sci. Comput. 75, 889–905 (2018)

    Article  MathSciNet  Google Scholar 

  11. Jeon, Y., Park, E.-J., Shin, D.-W.: Hybrid spectral difference methods for an elliptic equation. Comput. Meth. Appl. Math. 17, 253–267 (2017)

    Article  MathSciNet  Google Scholar 

  12. Jeon, Y., Sheen, D.: Upwind hybrid spectral difference methods for the steady-state navier-stokes equations. In: Dick, J., Kuo, F. (eds.) Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 632–641. Springer-Verlag, Berlin (2018)

    Google Scholar 

  13. Jung, E., Peskin, C.S.: Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM J. Sci. Comput. 23(1), 19–45 (2001)

    Article  MathSciNet  Google Scholar 

  14. Kim, Y., Lai, M.-C., Peskin, C.S.: Numerical simulations of two-dimensional foam by the immersed boundary method. J. Comput. Phys. 229(13), 5194–5207 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kwak, D.Y., Jin, S., Kyeong, D.H.: A stabilized P1-nonconforming immersed finite element method for the interface elasticity problems. ESAIM Math. Model. Numer. Anal. 51, 187–207 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lai, M.-C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. Comput. Phys. 160(2), 705–719 (2000)

    Article  MathSciNet  Google Scholar 

  17. Lee, L., LeVeque, R.: An immersed interface method for incompressible navier-stokes equations. SIAM J. Sci. Comput. 25(3), 832–856 (2003)

    Article  MathSciNet  Google Scholar 

  18. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    Article  MathSciNet  Google Scholar 

  19. LeVeque, R.J., Li, Z.: Immersed interface methods for stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709–735 (1997)

    Article  MathSciNet  Google Scholar 

  20. Li, Z.: On convergence of the immersed boundary method for elliptic interface problems. Math. Comp. 84, 1169–1188 (2015)

    Article  MathSciNet  Google Scholar 

  21. Li, Z., Ito, K.: The immersed interface method: Numerical solutions of PDEs involving interfaces and irregular domains, Frontiers in Applied Mathematics. SIAM Pub., (2006)

  22. Li, Z., Lai, M.-C.: The immersed interface method for the navier-stokes equations with singular forces. J. Comp. Phys. 171(2), 822–842 (2001)

    Article  MathSciNet  Google Scholar 

  23. Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Meth. PDEs 20(3), 338–367 (2004)

    Article  MathSciNet  Google Scholar 

  24. Lin, T., Sheen, D., Zhang, X.: A nonconforming immersed finite element method for elliptic interface problems. J. Sci. Comput. 79, 442–463 (2019)

    Article  MathSciNet  Google Scholar 

  25. Marques, A., Nave, J.-C., Rosales, R.R.: A correction function method for poisson problems with interface jump conditions. J. Comp. Phys. 230, 7567–7597 (2011)

    Article  MathSciNet  Google Scholar 

  26. Marques, A.N., Nave, J.-C., Rosales, R.R.: High order solution of poisson problems with piecewise constant coefficients and interface jumps. J. Comp. Phys. 335, 497–515 (2017)

    Article  MathSciNet  Google Scholar 

  27. Peskin, C.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  28. Stein, D.B., Guy, R.D., Thomases, B.: Immersed boundary smooth extension: A high-order method for solving pde on arbitrary smooth domains using fourier spectral methods. J. Comp. Phys. 304, 252–274 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like express sincere thanks to Prof. Son-Young Yi at department of mathematics, UTEP for careful reading the manuscript and suggesting invaluable comments, which improved the early version of the manuscript a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmok Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This author was supported by NRF 2018R1D1A1A09082082.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, Y. An immersed hybrid difference method for the elliptic interface equation. Japan J. Indust. Appl. Math. 39, 669–692 (2022). https://doi.org/10.1007/s13160-022-00503-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00503-4

Keywords

Mathematics Subject Classification

Navigation