Skip to main content
Log in

Seamless integration of elliptic Dirichlet-to-Neumann boundary condition and high order spectral element method for scattering problem

  • Special Feature: Original Paper
  • The Seventh China-Japan-Korea Joint Conference on Numerical Mathematics (CJK2018), 20-24 August 2018, Kanazawa, Japan
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a semi-analytic approach to enhance the integration of elliptic Dirichlet-to-Neumann (DtN) boundary condition and high order spectral element method in solving scattering problem with slender scatterer. By using appropriate elemental mapping in the spectral element discretization, semi-analytic formulas are obtained for the computation of Mathieu expansion coefficients involved in the global DtN operator. Further, a semi-analytic approach is proposed for the computation of global boundary integral terms in the spectral element discretization. The proposed semi-analytic formulas can also be used to calculate Mathieu expansion coefficients for functions given values on spectral element grids. Numerical examples show that spectral element method with the proposed semi-analytic approach can produce high order numerical solution for scattering problem with slender scatterer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arfken, G.B., Weber, H.J., Harris, E.F.: Mathematical Methods for Physicists, 7th edn. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  2. Astley, R.J.: Infinite elements for wave problems: a review of current formulations and an assessment of accuracy. Int. J. Numer. Methods Eng. 49(7), 951–976 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bateman, H.: Tables of integral transforms. In: Erdelyi, A. (ed.) California Institute of Technology Bateman Manuscript Project. McGraw-Hill, New York (1954)

    Google Scholar 

  4. Ben-Porat, G., Givoli, D.: Solution of unbounded domain problems using elliptic artificial boundaries. Commun. Numer. Methods Eng. 11(9), 735–741 (1995)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.M., Liu, X.Z.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43(2), 645–671 (2005)

    Article  MathSciNet  Google Scholar 

  6. Ciskowski, R.D., Brebbia, C.A.: Boundary Element Methods in Acoustics. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  7. Collino, F., Monk, P.: The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19(6), 2061–2090 (1998)

    Article  MathSciNet  Google Scholar 

  8. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory, vol. 72. SIAM, Philadelphia (2013)

    Book  Google Scholar 

  9. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow, vol. 9. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  10. Fang, Q.R., Shen, J., Wang, L.L.: An efficient and accurate spectral method for acoustic scattering in elliptic domains. Numer. Math. Theory Methods Appl. 2, 258–274 (2009)

    Article  MathSciNet  Google Scholar 

  11. Fournier, A.: Exact calculation of fourier series in nonconforming spectral-element methods. J. Comput. Phys. 215, 1–5 (2006)

    Article  MathSciNet  Google Scholar 

  12. Gerdes, K., Demkowicz, L.: Solution of 3D-laplace and Helmholtz equations in exterior domains using HP-infinite elements. Comput. Methods Appl. Mech. Eng. 137(3–4), 239–273 (1996)

    Article  Google Scholar 

  13. Givoli, D.: Recent advances in the DtN FE method. Arch. Comput. Method E 6(2), 71–116 (1999)

    Article  MathSciNet  Google Scholar 

  14. Grote, M.J., Keller, J.B.: On nonreflecting boundary conditions. J. Comput. Phys. 122, 231–243 (1995)

    Article  MathSciNet  Google Scholar 

  15. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  MathSciNet  Google Scholar 

  16. Keller, J.B., Givoli, D.: Exact non-reflecting boundary conditions. J. Comput. Phys. 82(1), 172–192 (1989)

    Article  MathSciNet  Google Scholar 

  17. Lebedev, N.N., Silverman, R.A., Livhtenberg, D.B.: Special functions and their applications. Phys. Today 18(12), 70–72 (1965)

    Article  Google Scholar 

  18. Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, vol. 107. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  19. Mclachlan, N.W.: Theory and application of Mathieu functions. Math. Gazette 52(379), 50–52 (1951)

    Google Scholar 

  20. NIST US Department of Commerce. A special functions handbook for the digital age. Notices of the American Mathematical Society

  21. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  22. Song, L.J., Zhang, J., Wang, L.L.: A multi-domain spectral IPDG method for Helmholtz equation with high wave number. J. Comput. Math. 31(2), 107–136 (2013)

    Article  MathSciNet  Google Scholar 

  23. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2005)

    MATH  Google Scholar 

  24. Thompson, L.L.: A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 119(3), 1315–1330 (2006)

    Article  Google Scholar 

  25. Wang, B., Wang, L.L., Xie, Z.Q.: Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids. Adv. Comput. Math. 44, 951–985 (2018)

    Article  MathSciNet  Google Scholar 

  26. Wang, L.L., Wang, B., Zhao, X.D.: Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions. SIAM J. Appl. Math. 72(6), 1869–1898 (2012)

    Article  MathSciNet  Google Scholar 

  27. Wittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)

    Google Scholar 

  28. Yang, Z.G., Wang, L.L.: Accurate simulation of circular and elliptic cylindrical invisibility cloaks. Commun. Comput. Phys. 17(3), 822–849 (2015)

    Article  MathSciNet  Google Scholar 

  29. Yang, Z.G., Wang, L.L., Rong, Z.J., Wang, B., Zhang, B.L.: Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhang, S.J., Jin, J.M.: Computation of special functions. Am. J. Phys. 65(4), 355 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Rui Zhang acknowledges the financial support provided by NSFC (Grant 11771138 and 11771137). Bo Wang acknowledges the financial support provided by NSFC (Grant 11771137), the Construct Program of the Key Discipline in Hunan Province and a Scientific Research Fund of Hunan Provincial Education Department (No. 16B154). Ziqing Xie is partially supported by NSFC (91430107, 11171104 and 11771138) and the Construct Program of the Key Discipline in Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, B. & Xie, Z. Seamless integration of elliptic Dirichlet-to-Neumann boundary condition and high order spectral element method for scattering problem. Japan J. Indust. Appl. Math. 36, 1129–1148 (2019). https://doi.org/10.1007/s13160-019-00383-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00383-1

Keywords

Mathematics Subject Classification

Navigation