Skip to main content
Log in

Filters consist of a few resolvents to solve real symmetric definite generalized eigenproblems

  • Special Feature: Original Paper
  • International Workshop on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2018)
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

By using a filter, we solve those eigenpairs of a real symmetric definite generalized eigenproblem \(A{\mathbf {v}}=\lambda B{\mathbf {v}}\) whose eigenvalues are in a specified real interval. In present study, the filter is a polynomial of the real-part of a linear combination of a few resolvents, and the polynomial is restricted to a Chebyshev polynomial to make the design of the filter simple. In order to apply a few resolvents, the same number of systems of linear equations with different shifts are solved. In present study, we assume those systems of linear equations are solved by some direct method using matrix factorizations. Since only a few resolvents are used, the number of required factorizations is also a few (2–4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Austin, A.P., Trefethen, L.N.: Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic. SIAM J. Sci. Comput 37(3), A1365–A1387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Daniels, R.W.: Approximation Methods for Electronic Filter Design. McGraw-Hill, New York (1974)

    Google Scholar 

  3. Demmel, J., Veselić, K.: Jacobi’s method is more accurate than \(QR\). SIAM J. Matrix Anal. Appl. 13(4), 1204–1245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Galgon, M., Krämer, L., Lang, B.: The FEAST algorithm for large eigenvalue problems. PAMM 11, 747–748 (2011)

    Article  Google Scholar 

  5. Güttel, S., Polizzi, P., Tang, P.T.P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput 37(4), A2100–A2122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai–Sugiura projection method. J. Compu. Appl. Math. 233(8), 1927–1936 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lutovac, M.D., Tos̆ić, D.V., Evans, B.L.: Filter Design for Signal Processing. §12.8. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  8. Murakami, H.: Filter diagonalization method by using a polynomial of a resolvent as the filter for a real symmetric-definite generalized eigenproblem. In: Sakurai, T., Zhang, S.L., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T.(eds.) Proceedings of EPASA2015, Tsukuba, Japan, Sept. 2015, pp. 205–232. Springer LNCSE-117 (2018)

  9. Polizzi, E.: A density matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79(1), 115112–115117 (2009)

    Article  Google Scholar 

  10. Rutishauser, H.: The Jacobi method for real symmetric matrices. Numer. Math. 9(1), 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sakurai, T., Tadano, H.: CIRR: a Rayleigh–Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36(4), 745–757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Toledo, S., Rabani, E.: Very large electronic structure calculations using an out-of-core filter-diagonalization method. J. Comput. Phys. 180(1), 256–269 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Murakami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, H. Filters consist of a few resolvents to solve real symmetric definite generalized eigenproblems. Japan J. Indust. Appl. Math. 36, 579–618 (2019). https://doi.org/10.1007/s13160-019-00355-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00355-5

Keywords

Mathematics Subject Classification

Navigation