Formalisation of probabilistic concealment

  • Izumi TakeutiEmail author
  • Tomoko Adachi
Original Paper


In probabilistic concealment, cryptographic protocols are used to ensure concealment through the use of random numbers. This paper proposes a formalisation of probabilistic concealment and a formal logical system under which probabilistic concealment is proven. Using a secret sharing scheme as an example, we demonstrate probabilistic concealment. As a result, we point out that evenness and independence are the essential notions in the proof of probabilistic concealment.


Probabilistic concealment Secret sharing Probabilistic logic Formal proof 

Mathematics Subject Classification

94A60 03F45 



We would like to thank the blind referees for proof reading and comments. We thank Editage for English language editing.


  1. 1.
    Halpern, J.Y., Meyden, R., Vardi, M.Y.: Complete axiomatizations for reasoning about knowledge and time. SIAM J. Comput. 33(2), 674–703 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Meyden, R.V.D., Su, K.: Symbolic model checking the knowledge of the dining cryptographers. In: Computer Security Foundations Workshop 2004, pp. 280–291 (2004)Google Scholar
  3. 3.
    Oded, G.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  4. 4.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Stinson, D.R.: An explication of secret sharing schemes. Designs Codes Cryptogr 2, 357–390 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Takeuti, I., Mano, K.: A proof of secrecy by probabilistic modal logic. Trans. JSIAM 22(1), 23–45 (2012). In JapaneseGoogle Scholar
  7. 7.
    Corin, R., Hartog, J.D.: A probabilistic Hoare-style logic for game-based cryptographic proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Proceedings of Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Part II. Lecture Notes in Computer Science, vol. 4052, pp. 252–263 (2006)Google Scholar
  8. 8.
    Meyden, R.V.D., Wilke, T.: Preservation of epistemic properties in security protocol implementations. In: TARK ’07, Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 212–221 (2007)Google Scholar
  9. 9.
    Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econ. Behav. 35(1–2), 31–53 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.Toho UniversityFunabashiJapan

Personalised recommendations