Advertisement

On the equivalence of the norms of the discrete diffrential forms in discrete exterior calculus

  • T. Satoh
  • T. Yaguchi
Original Paper Area 2
  • 19 Downloads

Abstract

For analysis of electromagnetic fields, differential forms are useful mathematical tools. Discrete exterior calculus (DEC) is a finite-difference-type framework of discretization of the discrete differential forms. Although several numerical estimations of errors of DEC have been reported, a tangible theoretical error bound is not established. One reason of this is that there are two norms that have been commonly used for the discrete differential forms. In this paper, we show that on any quasi-uniform mesh, the two norms of the discrete differential forms in DEC are equivalent, and moreover, the order of accuracy of the discrete differential forms are independent of the choice of the norm. As an application, it is shown that the accuracy of the discrete Hodge operator of DEC is of the second-order if any quasi-uniform Delaunay mesh is adopted.

Keywords

Discrete exterior calculus Delaunay triangulation Whitney form Equivalence of norms 

Mathematics Subject Classification

65N06 

Notes

Acknowledgements

This work was supported by PRESTO, JST (JPMJPR16EC) and JSPS KAKENHI Grant Number JP26400200.

References

  1. 1.
    Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1–155 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bell, N., Hirani, A.N.: PyDEC: Software and algorithms for discretization of exterior calculus. ACM Trans. Math. Softw. 39(1), 1–43 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 89–119. Springer, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Bossavit, A.: Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc. A Phys. Sci. Measure. Instrum. Manage. Educ. Rev. 135(8), 493–500 (1988)CrossRefGoogle Scholar
  5. 5.
    Bossavit, A.: Computational Electromagnetism. Academic Press, Boston (1998)zbMATHGoogle Scholar
  6. 6.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  8. 8.
    Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete Exterior Calculus. Arxiv preprint arXiv:math0508341 (2005)
  9. 9.
    Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math. 98(1), 79–104 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eisenberg, M.A., Malvern, L.E.: On finite element integration in natural co-ordinates. Int. J. Numer. Methods Eng. 7(4), 574–575 (1973)CrossRefGoogle Scholar
  11. 11.
    Gross, P.W., Kotiuga, P.R.: Data structures for geometric and topological aspects of finite element algorithms. Progr. Electromagn. Res. 32, 151–169 (2001)CrossRefGoogle Scholar
  12. 12.
    Hiptmair, R.: Discrete Hodge operators. Numerische Mathematik 90(2), 265–289 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11, 237–339 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hirani, A.: Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology (2003)Google Scholar
  15. 15.
    Hirani, A.N., Kalyanaraman, K., Vanderzee, E.B.: Delaunay Hodge star. CAD Comput. Aided Design 45(2), 540–544 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hirani, A.N., Nakshatrala, K.B., Chaudhry, J.H.: Numerical method for darcy flow derived using discrete exterior calculus. Int. J. Comput. Methods Eng. Sci. Mech. 16(3), 151–169 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kobayashi, K.: A recursive formula for the circumradius of the n-simplex. Forum Geometricorum 16, 179–184 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mohamed, M.S., Hirani, A.N., Samtaney, R.: Comparison of discrete Hodge star operators for surfaces. CAD Comput. Aided Design 78, 118–125 (2016)CrossRefGoogle Scholar
  19. 19.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Publishing Company, Menlo Park (1984)zbMATHGoogle Scholar
  20. 20.
    Nicolaides, R., Trapp, K.: Covolume discretization of differential forms. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 161–171. Springer, New York (2006)CrossRefGoogle Scholar
  21. 21.
    Rylander, T., Bondeson, A., Ingelström, P.: Computational Electromagnetics. Springer Science & Business Media, New York (2005)zbMATHGoogle Scholar
  22. 22.
    Waldron, S.: The error in linear interpolation at the vertices of a simplex. SIAM J. Numer. Anal. 35(3), 1191–1200 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)CrossRefGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computational Science Graduate School of System InformaticsKobe UniversityKobeJapan
  2. 2.JST, PRESTOKawaguchiJapan

Personalised recommendations