Skip to main content
Log in

An equivalent form for the \(\exp (-\phi (\xi ))\)-expansion method

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Recently, the \(\exp (-\phi (\xi ))\)-expansion method has attracted many authors’ interest. In this article, by making use of a certain Riccati equation, we obtain its equivalent form. Compared with the original \(\exp (-\phi (\xi ))\)-expansion method, the equivalent form is simpler, more direct and facile for application. The nonlinear Gerdjikov–Ivanov equation serves as an example to show its advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rahman, N., Akter, S., Roshid, H.O., Alam, M.N.: Traveling wave solutions of the (1+1)-dimensional compound KdVB equation by \(\exp (-\phi (\eta ))\)-expansion method. Glob. J. Sci. Front. Res. 13, 7–13 (2013)

    Google Scholar 

  2. Islam, R., Alam, M.N., Hossain, A.K.M.K.S., Roshid, H.O., Akbar, M.A.: Traveling wave solutions of nonlinear evolution equations via \(\exp (-\phi (\eta ))\)-expansion method. Glob. J. Sci. Front. Res. 13, 63–71 (2013)

    Google Scholar 

  3. Khan, K., Akbar, M.A.: Application of \(\exp (-\phi (\xi ))\)-expansion method to find the exact solutions of modified Benjamin–Bona–Mahony equation. World Appl. Sci. J. 24, 1373–1377 (2013)

    Google Scholar 

  4. Rahman, N., Alam, M.N., Roshid, H.O., Akter, S., Akbar, M.A.: Application of \(\exp (-\phi (\xi ))\)-expansion method to find the exact solutions of Shorma–Tasso–Olver equation. Afr. J. Math. Comput. Sci. Res. 7, 1–6 (2014)

    Article  Google Scholar 

  5. Khan, K., Akbar, M.A.: The \(\exp (-\phi (\xi ))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 5, 72–83 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Akbar, M.A., Ali, N.H.M.: Solitary wave solutions of the fourth order Boussinesq equation through the \(\exp (-\phi (\eta ))\)-expansion method. SpringerPlus 3, 344 (2014)

    Article  Google Scholar 

  7. Roshid, H.O., Rahman, M.A.: The \(\exp (-\phi (\eta ))\)-expansion method with application in the (1+1)-dimensional classical Boussinesq equations. Results Phys. 4, 150–155 (2014)

    Article  Google Scholar 

  8. Hafez, M.G., Alam, M.N., Akbar, M.A.: Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud Univ. Sci. 27, 105–112 (2015)

    Article  Google Scholar 

  9. Roshid, H.O., Alam, M.N., Akbar, M.A.: Traveling wave solutions for fifth order (1+1)-dimensional Kaup–Kupershmidt equation with the help of \(\exp (-\phi (\eta ))\)-expansion method. Walailak J. Sci. Technol. 12, 1063–1073 (2015)

    Google Scholar 

  10. Zahran, E.H.M.: Exact traveling wave solutions of nano-ionic solitons and nano-ionic current of MTs using the \(\exp (-\phi (\xi ))\)-expansion method. Adv. Nanopart. 4, 25–36 (2015)

    Article  Google Scholar 

  11. Alam, M.N., Hafez, M.G., Akbar, M.A., Roshid, H.O.: Exact solutions to the (2+1)-dimensional Boussinesq equation via \(\exp (-\phi (\eta ))\)-expansion method. J. Sci. Res. 7, 1–10 (2015)

    Article  Google Scholar 

  12. Baskonus, H.M., Bulut, H., Atangana, A.: On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25, 035022 (2016)

    Article  Google Scholar 

  13. Hafez, M.G.: Exact solutions to the (3+1)-dimensional coupled Klein–Gordon–Zakharov equation using \(\exp (-\phi (\xi ))\)-expansion method. Alex. Eng. J. 55, 1635–1645 (2016)

    Article  Google Scholar 

  14. Ali, A., Iqbal, M.A., Mohyud-Din, S.T.: Traveling wave solutions of generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony and simplified modified form of Camassa–Holm equation \(\exp (-\phi (\eta ))\)-expansion method. Egypt. J. Basic Appl. Sci. 3, 134–140 (2016)

    Article  Google Scholar 

  15. Bulut, H., Baskonus, H.M.: New complex hyperbolic function solutions for the (2+1)-dimensional dispersive long waterwave system. Math. Comput. Appl. 21, 6 (2016)

    Google Scholar 

  16. Alam, M.N., Tunc, C.: An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system. Alex. Eng. J. 55, 1855–1865 (2016)

    Article  Google Scholar 

  17. Khater, M.M.A.: Exact traveling wave solutions for the generalized Hirota–Satsuma couple KdV system using the \(\exp (-\phi (\xi ))\)-expansion method. Cogent Math. 3, 1172397 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kaplan, M., Bekir, A.: A novel analytical method for time-fractional differential equations. Optik 127, 8209–8214 (2016)

    Article  Google Scholar 

  19. Ali, A., Iqbal, M.A., Mohyud-Din, S.T.: New analytical solutions for nonlinear physical models of the coupled Higgs equation and the Maccari system via rational \(\exp (-\phi (\eta ))\)-expansion method. Pramana J. Phys. 87, 79 (2016)

    Article  Google Scholar 

  20. Baskonus, H.M., Bulut, H., Belgacem, F.B.M.: Analytical solutions for nonlinear longshort wave interaction systems with highly complex structure. J. Comput. Appl. Math. 312, 257–266 (2017)

    Article  MathSciNet  Google Scholar 

  21. Islam, M.R., Roshid, H.O.: Application of \(\exp (-\phi (\xi ))\)-expansion method for Tzitzeica type nonlinear evolution equations. J. Found. Appl. Phys. 4, 8–18 (2017)

    Google Scholar 

  22. Alam, M.N., Alam, M.M.: An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J. Taibah Univ. Sci. 11, 939–948 (2017)

    Article  Google Scholar 

  23. Mirzazadeh, M., Ekici, M., Zhou, Q., Sonmezoglu, A.: Analytical study of solitons in the fiber waveguide with power law nonlinearity. Superlattices Microstruct. 101, 493–506 (2017)

    Article  Google Scholar 

  24. Akbulut, A., Kaplan, M., Tascan, F.: The investigation of exact solutions of nonlinear partial differential equations by using \(\exp (-\phi (\xi ))\) method. Optik 132, 382–387 (2017)

    Article  Google Scholar 

  25. Kadkhoda, N., Jafari, H.: Analytical solutions of the GerdjikovIvanov equation by using \(\exp (-\phi (\xi ))\)-expansion method. Optik 139, 72–76 (2017)

    Article  Google Scholar 

  26. Ni, W.G., Dai, C.Q.: Note on same result of different anstz based on extended tanh-function method for nonlinear models. Appl. Math. Comput. 270, 434–440 (2015)

    MathSciNet  Google Scholar 

  27. Rogers, C., Chow, K.W.: Localized pulses for the quintic derivative nonlinear Schödinger equation on a continuous-wave background. Phys. Rev. E 86, 037601 (2012)

    Article  Google Scholar 

  28. Triki, H., Alqahtani, R.T., Zhou, Q., Biswas, A.: New envelope solitons for Gerdjikov–Ivanov model in nonlinear fiber optics. Superlattices Microstruct. 111, 326–334 (2017)

    Article  Google Scholar 

  29. Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for GerdjikovIvanov model by extended trial equation scheme. Optik 157, 1241–1248 (2018)

    Article  Google Scholar 

  30. Lü, X., Ma, W.X., Yu, J., Lin, F., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many thanks are due to the helpful comments and suggestions from the anonymous referee and support from the Scientific Research Fund of Zhejiang Provincial Education Department (Grant number Y201432746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Zhun Liu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HZ. An equivalent form for the \(\exp (-\phi (\xi ))\)-expansion method. Japan J. Indust. Appl. Math. 35, 1153–1161 (2018). https://doi.org/10.1007/s13160-018-0324-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-018-0324-x

Keywords

Mathematics Subject Classification

Navigation