Advertisement

A multi-point iterative method for solving nonlinear equations with optimal order of convergence

  • Mehdi SalimiEmail author
  • N. M. A. Nik Long
  • Somayeh Sharifi
  • Bruno Antonio Pansera
Original Paper Area 2

Abstract

In this study, a three-point iterative method for solving nonlinear equations is presented. The purpose is to upgrade a fourth order iterative method by adding one Newton step and using a proportional approximation for last derivative. Per iteration this method needs three evaluations of the function and one evaluation of its first derivatives. In addition, the efficiency index of the developed method is \(\root 4 \of {8}\approx 1.682\) which supports the Kung-Traub conjecture on the optimal order of convergence. Moreover, numerical and graphical comparison of the proposed method with other existing methods with the same order of convergence are given.

Keywords

Multi-point iterative methods Simple root Order of convergence Kung and Traub’s conjecture Efficiency index 

Mathematics Subject Classification

65H05 37F10 

References

  1. 1.
    Ababneh, O.Y.: New fourth order iterative methods second derivative free. J. Appl. Math. Phys. 4, 519–523 (2016)CrossRefGoogle Scholar
  2. 2.
    Amat, S., Busquier, S., Magreñán, Á.A.: Reducing chaos and bifurcations in Newton-type methods. Abstr. Appl. Anal. 2013, 10 (2013). (Art. ID 726701)Google Scholar
  3. 3.
    Behl, R., Argyros, I.K., Motsa, S.S.: A new highly efficient and optimal family of eighth-order methods for solving nonlinear equations. Appl. Math. Comput. 282, 175–186 (2016)MathSciNetGoogle Scholar
  4. 4.
    Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225, 105–112 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chun, C., Neta, B.: Comparison of several families of optimal eighth order methods. Appl. Math. Comput. 274, 762–773 (2016)MathSciNetGoogle Scholar
  6. 6.
    Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ezquerro, J.A., Hernández, M.A.: An optimization of Chebyshev’s method. J. Complexity 25, 343–361 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ferrara, M., Sharifi, S., Salimi, M.: Computing multiple zeros by using a parameter in Newton-Secant method. SeMA J. 74(4), 361–369 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hernández-Paricio, L.J., Marañón-Grandes, M., Rivas-Rodríguez, M.T.: Plotting basins of end points of rational maps with Sage. Tbil. Math. J. 5(2), 71–99 (2012)zbMATHGoogle Scholar
  10. 10.
    King, R.F.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 634–651 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lotfi, T., Sharifi, S., Salimi, M., Siegmund, S.: A new class of three-point methods with optimal convergence order eight and its dynamics. Numer. Algor. 68, 261–288 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Matthies, G., Salimi, M., Sharifi, S., Varona, J.L.: An optimal eighth-order iterative method with its dynamics. Jpn. J. Ind. Appl. Math. 33(3), 751–766 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nik Long, N.M.A., Salimi, M., Sharifi, S., Ferrara, M.: Developing a new family of Newton-Secant method with memory based on a weight function. SeMA J. 74(4), 503–512 (2017)Google Scholar
  15. 15.
    Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Pres, New York (1966)zbMATHGoogle Scholar
  16. 16.
    Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier/Academic Press, Amsterdam (2013)zbMATHGoogle Scholar
  17. 17.
    Salimi, M., Lotfi, T., Sharifi, S., Siegmund, S.: Optimal Newton-Secant like methods without memory for solving nonlinear equations with its dynamics. Int. J. Comput. Math. 94(9), 1759–1777 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sharifi, S., Ferrara, M., Salimi, M., Siegmund, S.: New modification of Maheshwari method with optimal eighth order of convergence for solving nonlinear equations. Open Math. (formerly Cent. Eur. J. Math.), 14, 443–451 (2016)Google Scholar
  19. 19.
    Sharifi, S., Salimi, M., Siegmund, S., Lotfi, T.: A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations. Math. Comput. Simulat. 119, 69–90 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sharifi, S., Siegmund, S., Salimi, M.: Solving nonlinear equations by a derivative-free form of the King’s family with memory. Calcolo 53, 201–215 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Stewart, B.D.: Attractor basins of various root-finding methods. M.S. thesis, Naval Postgraduate School, Monterey, CA (2001)Google Scholar
  22. 22.
    Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964)zbMATHGoogle Scholar
  24. 24.
    Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24(1), 37–46 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, X., Liu, L.: Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Appl. Math. Lett. 23, 549–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Dynamics, Department of MathematicsTechnische Universität DresdenDresdenGermany
  2. 2.Department of Mathematics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.MEDAlics, Research Center at Università per Stranieri Dante AlighieriReggio CalabriaItaly
  4. 4.Department of Law and EconomicsUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations