Skip to main content
Log in

A fast algorithm to construct a representation for transversal matroids

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Transversal matroids were introduced in the mid 1960s and unified many results in transversal theory. Piff and Welsh proved that a transversal matroid is representable over all sufficiently large fields. To date, their merge algorithm is the only known algorithm to construct a representation matrix for a given transversal matroid. In this paper, a new algorithm to construct a representation matrix for a given transversal matroid is proposed that is faster than the Piff–Welsh algorithm. Let \(G=(V^{(1)}\dot{\cup }V^{(2)},E)\) be the bipartite graph representing a transversal matroid and \({\mathcal {M}}\) the set of all complete matchings of G. The time complexity of the proposed algorithm is \(O\left( |V^{(1)}|^{1/2}|E| + |V^{(1)}| |{\mathcal {M}}|\right) \). This algorithm makes use of complete matchings of bipartite graphs instead of matrix determinants, and an enumeration algorithm is used to find these matchings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 77, 509–533 (1935)

    Article  MathSciNet  Google Scholar 

  2. Edmonds, J., Fulkerson, D.R.: Transversals and matroid partition. J. Res. Nat. Bur. Stand. Sect. 69B(6), 147–153 (1965)

    Article  MathSciNet  Google Scholar 

  3. Piff, M.J., Welsh, D.J.A.: On the vector representation of matroids. J. Lond. Math. Soc. 2, 284–288 (1970)

    Article  MathSciNet  Google Scholar 

  4. Whitty, R.W.: Operations Research and Combinatorial Optimisation. Univ. London Press, London (2010)

    Google Scholar 

  5. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math. Comput. 28, 231–236 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput. Complex. 13, 91–130 (2005)

    Article  MathSciNet  Google Scholar 

  7. Janich, K.: Linear Algebra. Springer, New York (1994)

    Book  Google Scholar 

  8. Fragouli, C., Soljanin, E.: Network coding fundamentals. Found. Trends Netw. 2(1), 1–133 (2007)

    Article  Google Scholar 

  9. Fukuda, K., Matsui, T.: Finding all the perfect matchings in bipartite graphs. Appl. Math. Lett. 1, 15–18 (1994)

    Article  MathSciNet  Google Scholar 

  10. Tarjan, R.E.: Depth-first search and linear graph algorithm. SIAM J. Comput. 1, 146–169 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matching in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In: Algorithms and Computation, Lecture Notes in Computer Science, vol. 1350, pp. 92–101. Springer, Berlin (1997)

  13. Uno, T.: A fast algorithm for enumerating bipartite perfect matchings. In: Algorithms and Computation, Lecture Notes in Computer Science, vol. 2223, pp. 367–379. Springer, Berlin (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Aaron Gulliver.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekab-Eslami, M., Esmaeili, M. & Gulliver, T.A. A fast algorithm to construct a representation for transversal matroids. Japan J. Indust. Appl. Math. 33, 207–226 (2016). https://doi.org/10.1007/s13160-016-0209-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-016-0209-9

Keywords

Mathematics Subject Classification

Navigation