Skip to main content
Log in

Smooth parametrizations in dynamics, analysis, diophantine and computational geometry

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Smooth parametrization consists in a subdivision of the mathematical objects under consideration into simple pieces, and then parametric representation of each piece, while keeping control of high order derivatives. The main goal of the present paper is to provide a short overview of some results and open problems on smooth parametrization and its applications in several apparently rather separated domains: smooth dynamics, diophantine geometry, approximation theory, and computational geometry. The structure of the results, open problems, and conjectures in each of these domains shows in many cases a remarkable similarity, which we try to stress. Sometimes this similarity can be easily explained, sometimes the reasons remain somewhat obscure, and it motivates some natural questions discussed in the paper. We present also some new results, stressing interconnection between various types and various applications of smooth parametrization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, L., Mourrain, B., Tecourt, J.-P.: Isotopic triangulation of a real algebraic surface. J. Symb. Comput. 44(9), 1291–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baran, M., Pleśniak, W.: Bernstein and van der Corput–Shaake type inequalities on semialgebraic curves. Stud. Math. 125(1), 83–96 (1997)

    MATH  Google Scholar 

  3. Baran, M., Pleśniak, W.: Polynomial inequalities on algebraic sets. Stud. Math. 141(3), 209–219 (2000)

    MATH  Google Scholar 

  4. Baran, M., Pleśniak, W.: Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities. Stud. Math. 141(3), 221–234 (2000)

    MATH  Google Scholar 

  5. Batenkov, D., Yomdin, Y.: Taylor Domination, Turán Lemma, and Poincaré–Perron Sequences. In: Nonlinear Analysis and Optimization. Contemporary Mathematics, AMS (to appear)

  6. Batenkov, D., Yomdin, Y.: Geometry and singularities of the Prony mapping. J. Singul. 10, 1–25 (2014)

    MathSciNet  Google Scholar 

  7. Benedetti, R., Risler, J.J.: Real algebraic and semi-algebraic sets. In: Actualites Mathematiques. Hermann, Paris (1990)

  8. Bierstone, E., Milman, P.: Semianalytic and subanalytic sets. IHES Publ. Math. 67, 5–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bierstone, E., Grigoriev, D., Wlodarczyk, J.: Effective Hironaka resolution and its complexity. Asian J. Math. 15(2), 193–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bombieri, E., Pila, J.: The number of integral points on arcs and ovals. Duke Math. J. 59(2), 337–357 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bos, L., Levenberg, N., Milman, P., Taylor, B.A.: Tangential Markov inequalities characterize algebraic submanifolds of \(C^n\). Indiana Univ. Math. J. 44, 115–137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bos, L., Levenberg, N., Milman, P., Taylor, B.A.: Tangential Markov inequalities on real algebraic varieties. Indiana Univ. Math. J. 47(4), 1257–1272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bos, L.P., Brudnyi, A., Levenberg, N.: On polynomial inequalities on exponential curves in \(\mathbb{C}^n\). Constr. Approx. 31(1), 139–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourgain, J., Goldstein, M., Schlag, W.: Anderson localization for Schrodinger operators on \(Z^2\) with quasi-periodic potential. Acta Math. 188, 41–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brudnyi, A.: On local behavior of holomorphic functions along complex submanifolds of \({\mathbb{C}}^N\). Invent. Math. 173(2), 315–363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brudnyi, A., Yomdin, Y.: Norming Sets and related Remez-type Inequalities (2013, preprint). arXiv:1312.6050

  17. Burguet, D.: A proof of Yomdin–Gromov’s algebraic lemma. Isr. J. Math. 168, 291–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burguet, D.: Quantitative Morse–Sard theorem via algebraic lemma. C. R. Math. Acad. Sci. Paris 349(7–8), 441–443 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Burguet, D.: Existence of measures of maximal entropy for \(C^r\) interval maps. Proc. Am. Math. Soc. 142(3), 957–968 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burguet, D., Liao, G., Yang, J.: Asymptotic h-expansiveness rate of \(C^\infty \) maps (2014, preprint)

  21. Butler, L.: Some cases of Wilkie’s conjecture. Bull. Lond. Math. Soc. 44(4), 642–660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cluckers, R., Comte, G., Loeser, F.: Non-archimedean Yomdin–Gromov parametrization and points of bounded height (preprint). arXiv:1404.1952v1

  23. Coman, D., Poletsky, E.A.: Transcendence measures and algebraic growth of entire functions. Invent. Math. 170, 103–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Coman, D., Poletsky, E.A.: Polynomial estimates, exponential curves and Diophantine approximation. Math. Res. Lett. 17, 1125–1136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Thelin, H., Vigny, G.: Entropy of meromorphic maps and dynamics of birational maps. Mem. Soc. Math. Fr. (N.S.) 122, vi+98 pp (2010)

  26. Diatta, D.N., Mourrain, B., Ruatta, O.: On the isotopic meshing of an algebraic implicit surface. J. Symb. Comput. 47(8), 903–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van den Dries, L.: Tame topology and O-minimal structures. In: London Mathematical Society Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)

  28. Elihai, Y., Yomdin, Y.: Flexible high order discretization of geometric data for global motion planning, Theor. Comput. Sci. A 157, 53–77 (1996)

  29. Fisher, A.: \(O\)-minimal, \(\Lambda ^m\)-regular stratification. Ann. Pure Appl. Log. 147, 101–112 (2007)

    Article  Google Scholar 

  30. Grigoriev, D., Milman, P.D.: Nash resolution for binomial varieties as Euclidean division. A priori termination bound, polynomial complexity in essential dimension 2. Adv. Math. 231(6), 3389–3428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gromov, M.: Entropy, homology and semialgebraic geometry (after Y. Yomdin). Séminaire Bourbaki, vol. 1985/86

  32. Gromov, M.: Spectral geometry of semi-algebraic sets. Ann. Inst. Fourier (Grenoble) 42(1–2), 249–274 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guedj, V.: Entropie topologique des applications méromorphes. Ergod. Theory Dyn. Syst. 25, 1847–1855 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Haviv, D., Yomdin, Y.: Uniform approximation of near-singular surfaces. Theor. Comput. Sci. 392(1–3), 92–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hayman, W.K.: Multivalent Functions, 2nd edn. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  36. Hironaka, H.: Triangulations of algebraic sets. Proc. Symp. Pure Math. Am. Math. Soc. 29, 165–185 (1975)

    Article  Google Scholar 

  37. Ishii, Y., Sands, D.: On some conjectures concerning the entropy of Lozi maps (2013, preprint)

  38. Jones, G.O., Thomas, M.E.M.: The density of algebraic points on certain Pfaffian surfaces. Q. J. Math. 63, 637–651 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jones, G.O., Miller, D.J., Thomas, M.E.M.: Mildness and the density of rational points on certain transcendental curves. Notre Dame J. Form. Log. 52(1), 67–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liao, G.: Entropy of analytic maps (2012, preprint)

  41. Liao, G., Viana, M., Yang, J.: The entropy conjecture for diffeomorphisms away from tangencies. J. Eur. Math. Soc. 15(6), 2043–2060 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. McMullen, C.: Entropy on Riemann surfaces and the Jacobians of finite covers. Comment. Math. Helv. 88(4), 953–964 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Marmon, O.: A generalization of the Bombieri–Pila determinant method. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), Issledovaniya po Teorii Chisel. 10, 63–77, 242 [Translation in J. Math. Sci. (N. Y.) 171(6), 736–744 (2010)]

  44. Masser, D.: Rational values of the Riemann zeta function. J. Number Theory 131, 2037–2046 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Milnor, J.: Is entropy effectively computable?, in a site “Open Problems in Dynamics and Ergodic Theory”. http://iml.univ-mrs.fr/kolyada/opds/

  46. Moncet, A.: Real versus complex volumes on real algebraic surfaces. Int. Math. Res. Not. 2012(16), 3723–3762

  47. Mourrain, B., Wintz, J.: A subdivision method for arrangement computation of semi-algebraic curves. In: Nonlinear Computational Geometry, pp. 165-187, The IMA Volumes in Mathematics and its Applications, vol. 151, Springer, New York (2010)

  48. Narayan, K.L.: Computer Aided Design and Manufacturing. Prentice Hall of India, New Delhi (2008)

    Google Scholar 

  49. Newhouse, S.: Entropy and volume. Ergod. Theory Dyn. Syst. 8 \(^*\)(Charles Conley Memorial Issue), 283–299 (1988)

  50. Newhouse, S.: Continuity properties of entropy. Ann. Math. (2) 129(2), 215–235 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Newhouse, S., Berz, M., Grote, J., Makino, K.: On the estimation of topological entropy on surfaces. In: Geometric and Probabilistic Structures in Dynamics, pp. 243–270. Contemporary Mathematics, vol. 469. American Mathematical Society, Providence (2008)

  52. Nonlinear Computational Geometry. In: Emeris, I.Z., Theobald, Th., Sottile, F. (eds.) The IMA Volumes in Mathematics and its Applications, vol. 151. Springer, New York (2010)

  53. Pierzchala, R.: Remez-type inequality on sets with cusps (2012, preprint)

  54. Pierzchala, R.: Markov’s inequality in the o-minimal structure of convergent generalized power series. Adv. Geom. 12(4), 647–664 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Pierzchala, R.: UPC condition in polynomially bounded o-minimal structures. J. Approx. Theory 132(1), 25–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Pila, J.: Geometric postulation of a smooth function and the number of rational points. Duke Math. J. 63, 449–463 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pila, J.: Geometric and arithmetic postulation of the exponential function. J. Aust. Math. Soc. Ser. A 54, 111–127 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pila, J.: Integer points on the dilation of a subanalytic surface. Q. J. Math. 55(Part 2), 207–223 (2004)

  59. Pila, J.: Rational points on a subanalytic surface. Annales De l’Institut Fourier, Grenoble 55(5), 1501–1516 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pila, J.: Mild parametrization and the rational points on a Pfaff curve. Commentarii Mathematici Universitatis Sancti Pauli 55, 1–8 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Pila, J.: On the algebraic points of a definable set. Sel. Math. N. S. 15, 151–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Pila, J.: Counting rational points on a certain exponential-algebraic surface. Annales De l’Institut Fourier, Grenoble 60(2), 489–514 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591–616 (2006)

    Article  MathSciNet  Google Scholar 

  64. Remez, E.J.: Sur une propriete des polynomes de Tchebycheff. Comm. Inst. Sci. Kharkov 13, 93–95 (1936)

    Google Scholar 

  65. Roytvarf, N., Yomdin, Y.: Bernstein classes. Annales De l’Institut Fourier, Grenoble 47(3), 825–858 (1997)

    Article  MathSciNet  Google Scholar 

  66. Scanlon, T.: Counting special points: logic, diophantine geometry, and transcendence theory. Bull. AMS 49(1), 51–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Scanlon, T.: A Euclidean Skolem–Mahler–Lech–Chabauty method. Math. Res. Lett. 18(5), 833–842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Thomas, M.E.M.: An o-minimal structure without mild parameterization. Ann. Pure Appl. Log. 162(6), 409–418 (2011)

    Article  MATH  Google Scholar 

  69. Thomas, M.E.M.: Convergence results for function spaces over o-minimal structures. J. Log. Anal. 4, Paper 1, 14 pp (2012)

  70. Wilkie, A.J.: Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Am. Math. Soc. 9, 1051–1094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wittig, A., Berz, M., Grote, J., Makino, K., Newhouse, S.: Rigorous and accurate enclosure of invariant manifolds on surfaces. Regul. Chaotic Dyn. 15(2–3), 107–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parameterization of computational domain in isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng. 200(23–24), 2021–2031 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput. Aided Des. 45(2), 395–404 (2013)

    Article  MathSciNet  Google Scholar 

  74. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis. Comput. Aided Des. 45(4), 812–821 (2013)

    Article  MathSciNet  Google Scholar 

  75. Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57(3), 285–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  76. Yomdin, Y.: \(C^k\)-resolution of semialgebraic sets and mappings. Isr. J. Math. 57(3), 301–317 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yomdin, Y.: Local complexity growth for iterations of real analytic mappings and semi-continuity moduli of the entropy. Ergod. Theory Dyn. Syst. 11, 583–602 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  78. Yomdin, Y.: Semialgebraic complexity of functions. J. Complex. 21(1), 111–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yomdin, Y.: Some quantitative results in singularity theory. Ann. Polon. Math. 87, 277–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  80. Yomdin, Y.: Generic singularities of surfaces, singularity theory. World Scientific Publishing, Hackensack (2007)

    Google Scholar 

  81. Yomdin, Y.: Analytic reparametrization of semialgebraic sets. J. Complex. 24(1), 54–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Yomdin, Y.: Remez-type inequality for discrete sets. Isr. J. Math. 186, 45–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  83. Yomdin, Y.: Generalized Remez inequality for \((s, p)\)-valent functions (2013, preprint). arXiv:1102.2580

  84. Yomdin, Y., Comte, G.: Tame geometry with application in smooth analysis. In: Lecture Notes in Mathematics, vol. 1834. Springer, Berlin (2004)

Download references

Acknowledgments

The author would like to thank D. Burguet, G. Comte, O. Friedland, Y. Ishii, G. Jones, G. Liao, P. Milman, B. Mourrain, J. Pila, R. Pierzchava, M. Thomas, A. Wilkie for useful discussions, and for explaining him some topics presented below. Special thanks belong to RIMS Institute, Kyoto, and to the organizers of the conference there in July 2013 on semi-algebraic techniques in Dynamics, which inspired a good part of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yomdin.

Additional information

This research was supported by the ISF, Grant No. 779/13, and by the Yeda-Sela Foundation.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yomdin, Y. Smooth parametrizations in dynamics, analysis, diophantine and computational geometry. Japan J. Indust. Appl. Math. 32, 411–435 (2015). https://doi.org/10.1007/s13160-015-0176-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0176-6

Keywords

Mathematics Subject Classification

Navigation