Skip to main content
Log in

A computer-assisted method for excluding eigenvalues of an elliptic operator linearized at a solution of a nonlinear problem

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a computer-assisted method for excluding eigenvalues of an elliptic operator linearized at a solution of a nonlinear problem. The method works in both the one-dimensional and the two-dimensional case. We begin by finding an approximate solution to a nonlinear problem, and we then enclose the solution by using Nakao’s numerical verification method. Instead of considering directly the eigenvalues for the elliptic operator linearized at the verified solution, we linearize the operator at the approximate solution. We present a theorem that allows us to determine under which conditions and in which disks there will be no eigenvalues. Thus, if any of those disks are contained in the enclosed area, we can exclude those eigenvalues. Next, we construct various computable criteria that allow us to use a computer program to find these disks. Finally, we use our results to determine which eigenvalues to exclude for the operator linearized at the verified solution. We present some verified results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. Academic Press, NewYork (1975)

  2. Cai, S.T., Nagatou, K., Watanabe, Y.: A numerical verification method for a system of FitzHugh-Nagumo type. Numer. Funct. Anal. Optim. 10(33), 1195–1220 (2012)

    Article  MathSciNet  Google Scholar 

  3. Chen, C.N., Ei, S.I., Lin, Y.P., et al.: Standing waves joining with Turing patterns in FitzHugh-Nagumo type systems. Comm. Part. Differ. Equ. 36(6), 998–1015 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Grindrod, P.: Pattern and Waves: The Theory and Application of Reaction-Diffusion Equations. Clarendon Press, Oxford (1991)

    Google Scholar 

  5. Iron, D., Wei, J., Winter, M.: Stability analysis of Turing patterns generated by the Schnakenberg model. J. Math. Biol. 49(4), 358–390 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  7. Kinoshita, T., Watanabe, Y., Nakao, M.T.: An improvement of the theorem of a posteriori estimates for inverse elliptic operators. Nonlinear Theory and Its Applications, IEICE 5(1), 47–52 (2014)

    Article  Google Scholar 

  8. Lizana M, Marin V.J.J.: Pattern formation in a reaction diffusion ratio-dependent predator-prey model. Notasde Mathemática 239, 1–16 (2005)

  9. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2001)

    Google Scholar 

  10. Murray, J.D.: Mathematical Biology \(\amalg \): Spatia Models and Biomedical Applications. Springer, New York (2001)

    Google Scholar 

  11. Nagatou, K., Nakao, M.T.: An enclosure method of eigenvalues for the elliptic operator linearized at an exact solution of nonlinear problems. Special issue on linear algebra in self-validating methods. Linear Algebra Appl., 324(1–3), 81–106 (2001)

  12. Nagatou, K., Hashimoto, K., Nakao, M.T.: Numerical verification of stationary solutions for Navier-Stokes problems. J. Comput. Appl. Math. 199(2), 445–451 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nagatou, K.: Numerical verification method for infinite dimensional eigenvalue problems. Japan J. Indust. Appl. Math. 26(2–3), 477–491 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nakao, M.T.: A numerical approach to the proof of the existence of solutions for elliptic problems. Japan J. Appl. Math. 5, 313–332 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nakao, M.T.: Numerical verification method for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim. 22, 321–356 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nakao, M.T., Watanabe, Y.: An efficient approach to the numerical verification for solutions of elliptic differential equations. Numer. Algorithms 37, 311–323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nakao, M.T., Watanabe, Y.: Numerical verification methods for solutions of semilinear elliptic boundary problem. Nonlinear Theory Appl. (IEICE) 2(1), 2–31 (2011)

  18. Rump, S.M.: INTLAB-INTerval LABoratory, a Matlab toolbox for verified computations, Version 6. Inst, Informatic, TU Hamburg-Harburg. http://www.ti3.tu-harburg.de/~rump/intlab/

  19. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Turing, A.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. London 237, 37–72 (1952)

    Article  Google Scholar 

  21. Watanabe, Y., Nagatou, K., Plum, M., Nakao, M.T.: A computer-assisted stability proof for the Orr-Sommerfeld problem with Poiseuille flow. Nonlinear Theory Appl. (IEICE) 2(1), 123–127 (2014)

    Article  Google Scholar 

  22. Watanabe, Y., Nagatou, K., Plum, M., Nakao, M.T.: Verified computations of eigenvalue excluding of computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces. SIAM J. Numer. Anal. 52(2), 975–992 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yamamoto, N.: A numerical verification method for a FitzHugh-Nagumo system with Neumann boundary conditions (in japanese), Master’s thesis, Kyushu University (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Cai.

Additional information

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Watanabe, Y. A computer-assisted method for excluding eigenvalues of an elliptic operator linearized at a solution of a nonlinear problem. Japan J. Indust. Appl. Math. 32, 263–294 (2015). https://doi.org/10.1007/s13160-015-0167-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0167-7

Keywords

Mathematics Subject Classification

Navigation