Some considerations of the invertibility verifications for linear elliptic operators

  • Mitsuhiro T. Nakao
  • Yoshitaka Watanabe
  • Takehiko Kinoshita
  • Takuma Kimura
  • Nobito Yamamoto
Original Paper Area 2
  • 136 Downloads

Abstract

This paper presents three computer-assisted procedures for verifying the invertibility of second-order linear elliptic operators and for computing a bound on the norm of its inverse. One of these procedures is an improvement of a theorem by Nakao et al. (Computing 75:1–14, 2005) that uses projection and constructive a priori error estimates and was proposed by two of the authors of this paper. Results verifying these procedures are presented for several numerical examples.

Keywords

Numerical verification Solvability of linear problem Differential operators Computer-assisted proof 

Mathematics Subject Classification

65G20 47F05 35P15 

References

  1. 1.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  2. 2.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)MATHGoogle Scholar
  3. 3.
    Hashimoto, K., Nagatou, K., Nakao, M.T.: A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains. Information 9, 573–580 (2006)MathSciNetGoogle Scholar
  4. 4.
    Kikuchi, F., Liu, X.: Determination of the Babuska-Aziz constant for the linear triangular finite element. Jpn. J. Ind. Appl. Math. 23, 75–82 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Kobayashi, K.: A constructive a priori error estimation for finite element discretizations in a non-convex domain using singular functions. Jpn. J. Ind. Appl. Math. 26, 493–516 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Nagatou, K.: Numerical verification method for infinite dimensional eigenvalue problems. Jpn. J. Ind. Appl. Math. 26, 477–491 (2009)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Nakao, M.T.: Computable \(L^\infty \) error estimates in the finite element method with application to nonlinear elliptic problems. In: Agarwal, R.P. (ed.) Contributions in Numerical Mathematics, pp. 309–319. World Scientific, Singapore (1993)CrossRefGoogle Scholar
  8. 8.
    Nakao, M.T., Yamamoto, N.: Numerical verification of solutions for nonlinear elliptic problems using \(L^\infty \) residual method. J. Math. Anal. Appl. 217, 246–262 (1998)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Nakao, M.T., Yamamoto, N., Kimura, S.: On best constant in the error bound for the \(H^1_0\)-projection into piecewise polynomial spaces. J. Approx. Theory 93, 491–500 (1998)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Nakao, M.T., Yamamoto, N.: A guaranteed bound of the optimal constant in the error estimates for linear triangular element. In: Alfeld, G., Chen, X. (eds.) Topics in Numerical Analysis with Special Emphasis on Nonlinear Problems, pp. 163–173, Computing, Suppl. 15, Springer, Wien, New York (2001)Google Scholar
  11. 11.
    Nakao, M.T., Yamamoto, N.: A guaranteed bound of the optimal constant in the error estimates for linear triangular element Part II: Details. In: Kulisch, U., Lohner, R., Facius, A. (eds.) Perspectives on Enclosure Methods, pp. 265–276. Springer, Wien (2001)CrossRefGoogle Scholar
  12. 12.
    Nakao, M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim. 22, 321–356 (2001)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Nakao, M.T., Hashimoto, K., Watanabe, Y.: A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems. Computing 75, 1–14 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Nakao, M.T., Hashimoto, K., Nagatou, K.: A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems. In: Proceedings of the 4th JSIAM-SIMAI Seminar on Industrial and Applied Mathematics. GAKUTO International Series, Mathematical Sciences and Applications 28, pp. 139–148, Gakkotosho, Tokyo (2008)Google Scholar
  15. 15.
    Nakao, M.T., Watanabe, Y.: Numerical verification methods for solutions of semilinear elliptic boundary value problems. NOLTA 2, 2–31 (2011)CrossRefGoogle Scholar
  16. 16.
    Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104, Kluwer Academic Publishers, Dordrecht (1999) http://www.ti3.tu-harburg.de/rump/
  17. 17.
    Watanabe, Y., Yamamoto, N., Nakao, M.T., Nishida, T.: A numerical verification of nontrivial solutions for the heat convection problem. J. Math. Fluid Mech. 6, 1–20 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Watanabe, Y., Kinoshita, T., Nakao, M.T.: A posteriori estimates of inverse operators for boundary value problems in linear elliptic partial differential equations. Math. Comp. 82, 1543–1557 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Yamamoto, N., Nakao, M.T.: Numerical verifications of solutions for elliptic equations in nonconvex polygonal domains. Numer. Math. 65, 503–521 (1993)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Yamamoto, N., Hayakawa, K.: Error estimation with guaranteed accuracy of finite element method in nonconvex polygonal domains. J. Comp. Appl. Math. 159, 173–183 (2003)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Yamamoto, N., Gemma, K.: On error estimation of finite element approximations to the elliptic equations in nonconvex polygonal domains. J. Comp. Appl. Math. 199, 286–296 (2007)CrossRefMATHGoogle Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2015

Authors and Affiliations

  • Mitsuhiro T. Nakao
    • 1
  • Yoshitaka Watanabe
    • 2
  • Takehiko Kinoshita
    • 3
    • 4
  • Takuma Kimura
    • 5
  • Nobito Yamamoto
    • 6
  1. 1.National Institute of Technology, Sasebo CollegeSaseboJapan
  2. 2.Research Institute for Information TechnologyKyushu UniversityFukuokaJapan
  3. 3.Center for the Promotion of Interdisciplinary Education and ResearchKyoto UniversityKyotoJapan
  4. 4.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  5. 5.JST CREST/Faculty of Science and EngineeringWaseda UniversityTokyoJapan
  6. 6.Department of Communication Engineering and Informatics, Faculty of Informatics and EngineeringUniversity of Electro-CommunicationsTokyoJapan

Personalised recommendations