Skip to main content
Log in

A computational theory for spiral point vortices in multiply connected domains with slit boundaries

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A spiral point vortex, which is a point vortex with a source-sink structure, appears when we consider a two-dimensional cross section of a straight vortex line with a uniform flow in its axial direction in three-dimensional space. In the present paper, we present a computational theory for the motion of spiral point vortices in two-dimensional exterior domains that contain multiple rectilinear line segments as boundaries, called slit domains. The theory consists of the evolution equation for spiral point vortices in multiply connected domains and a numerical procedure to construct conformal mappings from multiply connected domains with circular boundaries onto given slit domains. It is applicable to many flow problems arising in biofluids and environmental flows. As an example, we apply the theory to the flow problem of finding force-enhancing equilibria consisting of two spiral point vortices in a slit domain with two parallel plates in the presence of a uniform flow, which is a two-dimensional model of a wind-turbine with vertical blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amano K., Okano D., Ogata H., Sugihara M.: Numerical conformal mappings onto the linear slit domain. Japan J. Ind. Appl. Math. 29, 165–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker H.: Abelian functions. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  3. Crowdy D., Marshall J.: Analytic formulae for the Kirchhoff-Routh path function in multiply connected domains. Proc. R. Soc. A 61, 2477–2501 (2005)

    Article  MathSciNet  Google Scholar 

  4. Crowdy D.: Calculating the lift on a finite stack of cylindrical aerofoils. Proc. R. Soc. A 462, 1387–1407 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crowdy, D., Marshall: Conformal mappings between canonical multiply connected domains. Comput. Methods Funct. Theory 6, 59–76 (2006)

  6. Crowdy D.G., Marshall J.S.: Computing the Schottky–Klein prime function on the Schottky double of planar domains. Comput. Methods Funct. Theory 7, 293–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crowdy D.: Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions. Math. Proc. Camb. Philos. Soc. 142, 319–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crowdy D.: Analytical formulae for source and sink flows in multiply connected domains. Theor. Comput. Fluid Dyn. 27, 1–19 (2013). doi:10.1007/s00162-012-0258-x

    Article  Google Scholar 

  9. Cottet G.-H., Koumoutsakos P.D.: Vortex Methods Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  10. Huang, M.-K., Chow, C.-Y.: Trapping of a free vortex by Joukowski airfoils. AIAA paper 82-4059 (1981)

  11. Hummel, D.: On the vortex formation over a slender wing at large angles of incidence. AGARD CP-247, 15 (1978)

  12. Katsurada M., Okamoto H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31(1), 123–137 (1995)

    Article  MathSciNet  Google Scholar 

  13. Kochin N.E., Kibel I.A., Rose N.V.: Theoretical Hydrodynamics. Interscience Publishers, New York (1965)

    Google Scholar 

  14. Lentink D., Dickson W.B., van Leeuwen J.L., Dickinson M.H.: Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009)

    Article  Google Scholar 

  15. Mourtos N.J., Brooks M.: Flow past a flat plate with a vortex/sink combination. J. Appl. Mech. 63, 543–550 (1996)

    Article  MATH  Google Scholar 

  16. Murashima S.: Charge Simulation Method and Its Application. Morikita, Tokyo (1983)

    Google Scholar 

  17. Newton P.K.: The N-Vortex Problem. Springer, New York (2001)

    Book  Google Scholar 

  18. Newton P.K., Chamoun G.: Construction of point vortex equilibria via Brownian ratchets. Proc. R. Soc. A 463, 1525–1540 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Newton P.K., Ostrovskyi V.: Stationary equilibrium singularity distributions in the plane. Nonlinearity 25, 495–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rossow, V.G.: Lift enhancement by an externally trapped vortex. AIAA paper 77-672 (1977)

  21. Saffman P.G., Sheffield J.S.: Flow over a wing with an attached free vortex. Stud. Appl. Math. 57, 107–117 (1977)

    MATH  Google Scholar 

  22. Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  23. Sakajo T.: Equation of motion for point vortices in multiply connected circular domains. Proc. R. Soc. A 465, 2589–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakajo T.: Force-enhancing vortex equilibria for two parallel plates in uniform flow. Proc. R. Soc. A 468, 1175–1195 (2012)

    Article  MathSciNet  Google Scholar 

  25. Shiba, M.: On the Riemann–Roch theorem on open Riemann surfaces. J. Math. Kyoto Univ. 11, 495–525

  26. Trefethen L.N., Bau D. III: Numerical Linear Algebra. SIAM Publishing, Philadelphia (1997)

    Book  MATH  Google Scholar 

  27. See the webpage of Wikipedia at http://en.wikipedia.org/wiki/Vertical_axis_wind_turbine, 151–171. Accessed 14 Sept 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sakajo.

About this article

Cite this article

Aoyama, N., Sakajo, T. & Tanaka, H. A computational theory for spiral point vortices in multiply connected domains with slit boundaries. Japan J. Indust. Appl. Math. 30, 485–509 (2013). https://doi.org/10.1007/s13160-013-0113-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-013-0113-5

Keywords

Mathematics Subject Classification

Navigation