Skip to main content
Log in

Global-in-time strong solvability of the multi-dimensional one-phase Stefan problem for an incompressible viscous fluid

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the present paper, we consider the multi-dimensional one-phase Stefan problem describing the process of phase transition in an incompressible viscous fluid. The model is described as a free boundary problem consisting of the heat equation with a transport term and the Navier–Stokes equations. We prove the existence of a global-in-time strong solution with small data by introducing Lagrangian coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bui A.T.: On the classical solution of a single phase Stefan type problem for parabolic equations in planar domains with intersecting fixed and free boundaries. Rend. Accad. Naz. Sci. XL Mem. Mat. 14, 163–182 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Bazaliĭ, B.V., Degtyarev, S.P.: On classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid, Mat. Sb. (N.S.) 132, 3–19 (1987); [English Transl. in Math. USSR Sb. 60, 1–17 (1988)])

  3. Cannon J.R., DiBenedetto E., Knightly G.H.: The bidimensional Stefan problem with convection: the time dependent case. Comm. Partial Differ. Equ. 14, 1549–1604 (1983)

    Article  MathSciNet  Google Scholar 

  4. Fukao T., Kenmochi N.: Stefan problems with convection governed by Navier-Stokes equations, Adv. Math. Appl. Sci. 15(1), 29–48 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Galdi, G. P.: An introduction to the mathematical theory of the Navier–Stokes equations. In: Linearized steady problems, vol. I. Springer, New York (1994)

  6. Hanzawa E.: Classical solutions of the Stefan problem, Tohoku Math. J. 33, 297–335 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Hieber S.E., Koumoutsakos P.: A Lagrangian particle level set method. J. Comput. Phys. 210(1), 342–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoffmann K.-H., Starovoitov V.N.: The Stefan problem with surface tension and convection in Stokes fluid. Adv. Math. Sci. Appl. 8(1), 173–183 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Kusaka Y., Tani A.: On the classical solvability of the Stefan problem in a viscous incompressible fluid flow. SIAM J. Math. Anal. 30, 584–602 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kusaka Y., Tani A.: Classical solvability of the two phase Stefan problem in a viscous incompressible fluid flow. Math. Models Methods Appl. Sci. 12(3), 365–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meĭrmanov, A. M.: On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Mat. Sb. (N.S.) 112, 170–192 (1980); [English Transl. in Math. USSR. Sb., 40, 157–178 (1981)]

  12. Meĭrmanov, A. M.: The Stefan problem. Walter de Gruyter, Berlin (1992)

  13. Monaghan J.J.: Smoothed particle hydrodynamics. Rep. Progr. Phys. 68(8), 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  14. Meĭrmanov, A.M., Pukhnachov, V.V., Shmarev, S.I.: Evolution equations and Lagrangian coordinates. Walter de Gruyter, Berlin (1997)

  15. Sohr, H.: The Navier–Stokes equations. In: An Elementary Functional Analytic Approach. Birkhauser, Basel (2001)

  16. Solonnikov, V.A.: Estimates for solutions of a non-stationary linearized system of Navier–Stokes equations, Trudy Mat. Inst. Steklov. 70, 213–317 (1964); [English Transl. in Amer. Math. Soc. Transl. 75(2), 1–116 (1968)]

  17. Solonnikov, V.A.: Solvability of a problem on the motion of a viscous incompressible fluid bounded by a free surface, Zap. Nauchn. Sem. LOMI 38, 153–231 (1973); [English Transl. in J. Soviet Math. 8, 467–529 (1977)]

  18. Solonnikov, V.A.: Estimates for solutions of the non stationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator, (Russian) Uspekhi Mat. Nauk 58(2), 123–156 (2003); [English Transl. in Russian Math. Surveys 58(2), 331–365 (2003)]

  19. Tryggvason G., Bunner B., Esmaeeli A., Juric D., Al-Rawahi N., Tauber W., Han J., Nas S., Jan Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)

    Article  MATH  Google Scholar 

  20. Unverdi S.O., Tryggvason G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  21. Yoon H.Y., Koshizuka S., Oka Y.: Direct calculation of bubble growth, departure, and rise in nucleate pool boiling. Int. J. Multiphase Flow 27, 277–298 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kusaka.

About this article

Cite this article

Kusaka, Y. Global-in-time strong solvability of the multi-dimensional one-phase Stefan problem for an incompressible viscous fluid. Japan J. Indust. Appl. Math. 30, 415–439 (2013). https://doi.org/10.1007/s13160-013-0108-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-013-0108-2

Keywords

Mathematics Subject Classification (2000)

Navigation