A planar convex domain with many isolated “ hot spots” on the boundary

  • Yasuhito MiyamotoEmail author
Original Paper Area 1


We construct a convex domain such that the second Neumann eigenfunction has an arbitrary number of isolated local maximum points on the boundary. This domain, which is close to a sector, is constructed by combining thin isosceles triangles. Then we study the shape of the second Neumann eigenfunction on isosceles triangles. In particular, we show that if the isosceles triangle is subequilateral, then the second Neumann eigenvalue is simple and the associated eigenfunction has exactly two maximum points which are located at two corners.


Hot spots Convex domain Nodal line Maximum point 

Mathematics Subject Classification (2010)

Primary 35J25 35B38 Secondary 35J05 35P15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks anonymous referees for the careful reading of the manuscript and comments pointing out that the proofs of Lemmas 3.2 and 3.5 of the previous version of the manuscript were imperfect.


  1. 1.
    Atar, R., Burdzy, K.: On Neumann eigenfunctions in lip domains. J. Am. Math. Soc. 17, 243–265 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ashbaugh, M., Levine, H.: Inequalities for the Dirichlet and Neumann eigenvalues of the Laplacian for domains on spheres, Journées “Equations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1997), Exp. No. I, École Polytech., Palaiseau (1997).Google Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Interscience Publishers Inc., New York (1953)Google Scholar
  4. 4.
    Burdzy, K.: The hot spots problem in planar domains with one hole. J. Duke Math. 129, 481–502 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bañuelos, R., Burdzy, K.: On the “hot spots” conjecture of. J. Rauch. J. Funct. Anal. 164, 1–33 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bass, R., Burdzy, K.: Fiber Brownian motion and the “ hot spots” problem. J. Duke Math. 105, 25–58 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Burdzy, K., Werner, W.: A counterexample to the “hot spots” conjecture. Ann. Math. 149, 309–317 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Casten, R., Holland, C.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin) 12, 30–39 (1972)CrossRefGoogle Scholar
  10. 10.
    Grebenkov, D., Nguyen, B.: Geometric structure of Laplacian eigenfunctions. arXiv:1206.1278v1 (2012)Google Scholar
  11. 11.
    Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. Am. J. Math. 75, 449–476 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Helffer, B., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Owen, M.P.: Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains. Commum. Math. Phys. 202, 629–649 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Jerison, D., Nadirashvili, N.: The “hot spots” conjecture for domains with two axes of symmetry. J. Am. Math. Soc 13, 741–772 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kawohl, B.: Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)Google Scholar
  15. 15.
    Laugesen, R., Siudeja, B.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equ. 249, 118–135 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15, 401–454 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    McCartin, B.: Eigenstructure of the equilateral triangle. II. The Neumann problem. Math. Probl. Eng. 8, 517–539 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Miyamoto, Y.: An instability criterion for activator-inhibitor systems in a two-dimensional ball. J. Differ. Equ. 229, 494–508 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Miyamoto, Y.: An instability criterion for activator-inhibitor systems in a two-dimensional ball II. J. Differ. Equ. 239, 61–71 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Miyamoto, Y.: On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains. Q. Appl. Math. 65, 357–374 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Miyamoto, Y.: The “hot spots” conjecture for a certain class of planar convex domains. J. Math. Phys. 50, 103530 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Miyamoto, Y.: Global bifurcation and stable two-phase separation for a phase field model in a disk. Discret. Contin. Dyn. Syst. 30, 791–806 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pascu, M.: Scaling coupling of reflecting Brownian motions and the hot spots problem. Trans. Am. Math. Soc. 354, 4681–4702 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Payne, L.: On two conjectures in the fixed membrane eigenvalue problem. Z. Angew. Math. Phys. 24, 721–729 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Rauch, J.: Five problems: an introduction to the qualitative theory of partial differential equations. Partial Differential Equations and Related Topics (Program, Tulane Univ., New Orleans, La., 1974). Lecture Notes in Mathematics, vol. 446, pp. 355–369. Springer, Berlin (1975).Google Scholar

Copyright information

© The JJIAM Publishing Committee and Springer Japan 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations