Skip to main content

Universal Gröbner basis associated with the maximum flow problem

Abstract

We give a formulation of the maximum flow problem as an integer programming problem in the standard form. We characterize elementary vectors of the kernel lattice of the matrix coefficient in our formulation in terms of the combinatorial property of the graph, such as circuits and s–t paths, and we determine the universal Gröbner basis of the toric ideal associated with the maximum flow problem. Next, we examine the kernel lattice of the reduced incidence matrix of the digraph. Under suitable assumptions for the digraph, we prove that it is generated by all incidence vectors of s–t directed paths, which yield the generator of the toric ideal associated with the reduced incidence matrix of the digraph.

This is a preview of subscription content, access via your institution.

References

  1. Ahuja K., Magnanti L., Orlin B.: Network Flows. Prentice-Hall, New Jersey (1993)

    MATH  Google Scholar 

  2. Bachem A., Kern W.: Linear Programming Duality. Springer, Berlin (1992)

    MATH  Book  Google Scholar 

  3. Bayer D., Popescu S., Sturmfels B.: Syzygies of unimodular Lawrence ideals. Journal fuer die Reine und Angewandte Mathematik 5344, 169–186 (2001)

    MathSciNet  Google Scholar 

  4. Cox D., Little J., O’shea D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  5. Cox D., Little J., O’shea D.: Using Algebraic Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  6. Hosten, S., Sturmfels, B.: An implementation of Gröbner bases for integer programming. Lecture Notes in Computer Science, vol. 920, pp. 267–276. Springer (1995)

  7. Jungnickel D.: Graphs, Networks and Algorithm, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  8. Korte B., Vygen J.: Combinatorial Optimization, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  9. Miyagi, N.: Toric ideal associated with the maximum flow problem. Master’s thesis (2008) (in Japanese)

  10. Sturmfels B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  11. Sturmfels B., Weismantel R., Ziegler G.: Gröbner bases of lattices, corner polyhedra, and integer programming. Beiträge zur Algebra und Geometrie 36, 281–298 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Weismantel R.: Test sets of integer programs. Math. Methods Oper. Res. 47, 1–37 (1998)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sennosuke Watanabe.

About this article

Cite this article

Watanabe, S., Watanabe, Y. & Ikegami, D. Universal Gröbner basis associated with the maximum flow problem. Japan J. Indust. Appl. Math. 30, 39–50 (2013). https://doi.org/10.1007/s13160-012-0080-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-012-0080-2

Keywords

  • Maximum flow problem
  • Circuit
  • Universal Gröbner basis

Mathematics Subject Classification

  • 05C21
  • 05E45
  • 90C35