Skip to main content
Log in

Finite element method for parallel slit mappings

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We aim to establish a method of the finite element approximation by which we can construct the parallel slit mappings. It is characteristic of our method that we adopt ordinary triangular meshes and linear elements on a subregion of every fixed parametric disk, our triangulation embeds \({\overline{\Omega}}\) exactly even in the case of curvilinear boundary arcs, and our approximating functions of u express singular property exactly near inner and corner singularities. Our finite element approximations of the harmonic functions can be obtained by a combination of the method of the finite element approximations and the Schwarz’s alternative method. We apply our results to numerical calculations of the parallel mappings for the exterior domain of multielement airfoils etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L.V., Sario L.: Riemann Surfaces. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  2. Bramble J.H., Zlámal M.: Triangular elements in the finite element method. Math. Comput. 24, 809–820 (1970)

    Article  Google Scholar 

  3. Brown P.R.: A non-interactive method for the automatic generation of finite element meshes using the Schwarz-Christoffel transformation. Comput. Methods Appl. Mech. Eng. 25, 101–126 (1981)

    Article  MATH  Google Scholar 

  4. Caughey D.A.: A systematic procedure for generating useful conformal mappings. Int. J. Numeric. Methods Eng. 12, 1651–1657 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaudhry M.A., Schinzinger R.: Computing electrical potential in unbounded two-dimensional regions. Microelectron. Int. 20, 19–23 (2003)

    Article  Google Scholar 

  6. Chaudhry M.A.: Interpolation of numerically computed potential using finite element approach. Microelectron. Int. 21, 28–30 (2004)

    Article  Google Scholar 

  7. Driscoll T.A., Trefethen L.N.: Schwarz-Christoffel Mapping. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  8. Halsey, N.D.: Potential flow analysis of multielement airfoils using conformal mapping. In: Proceedings of AIAA 17th Aerospace Sciences Meeting, New Orleans, LA, USA, January 15–17, 1979

  9. Halsey D.: Conformal grid generation for multielement airfoils. In: Thompson, J.F. (eds) Numerical Grid Generation, pp. 585–600. Elsevier, Amsterdam (1982)

    Google Scholar 

  10. Han H.-D., Wu X.-N.: Approximation of infinite boundary condition and its application to finite element methods. J. Comput. Math. 3, 179–192 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Hara H., Mizumoto H.: Determination of the modulus of quadrilaterals by finite element methods. J. Math. Soc. Jpn. 42, 295–326 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hara H., Mizumoto H.: Finite element approximations for Δuqu = f on a Riemann surface. Japan J. Indust. Appl. Math. 19, 113–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ives D.C.: A modern look at conformal mapping including multiply connected regions. AIAA J. 14, 1006–1011 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luchini P., Manzo F.: Flow around simply and multiply connected bodies: a new iterative scheme for conformal mapping. AIAA J. 27, 345–351 (1989)

    Article  MathSciNet  Google Scholar 

  15. Mizumoto H.: A finite-difference method on a Riemann surface. Hiroshima Math. J. 3, 277–332 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Mizumoto H., Hara H.: Finite element approximations of harmonic differentials on a Riemann surface. Hiroshima Math. J. 18, 617–654 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Mizumoto H., Hara H.: Determination of the moduli of ring domains by finite element methods. Int. J. Differ. Equ. Appl. 3, 325–337 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Mizumoto, H., Hara, H.: A numerical method for determining the parameters of Schwarz-Christoffel transformation. Kawasaki J. Med. Welf. 17(1) (2011)

  19. Nevanlinna R.: Uniformisierung, Zweite Auflage. Springer, Berlin-Heidelberg-New York (1967)

    Google Scholar 

  20. Nielsen E.J., Anderson W.K.: Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J. 40, 1155–1163 (2002)

    Article  Google Scholar 

  21. Nitsche J.A.: Finite-element methods for conformal mappings. SIAM J. Numer. Anal. 26, 1525–1533 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stewart M.E.M.: Domain-decomposition algorithm applied to multielement airfoil grids. AIAA J. 30, 1457–1461 (1992)

    Article  MATH  Google Scholar 

  23. Wegmann R.: Methods for numerical conformal mapping. In: Kühnau, R. (eds) Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 351–477. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heihachiro Hara.

About this article

Cite this article

Mizumoto, H., Hara, H. Finite element method for parallel slit mappings. Japan J. Indust. Appl. Math. 28, 263–299 (2011). https://doi.org/10.1007/s13160-011-0038-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-011-0038-9

Keywords

Mathematics Subject Classification (2000)

Navigation