International Journal of Early Childhood

, Volume 45, Issue 3, pp 347–357 | Cite as

Intuitive and Informal Knowledge in Preschoolers’ Development of Probabilistic Thinking

  • Zoi Nikiforidou
  • Jenny Pange
  • Theodore Chadjipadelis
Original Article

Abstract

Preschoolers develop a wide range of mathematical informal knowledge and intuitive thinking before they enter formal, goal-oriented education. In their everyday activities young children get engaged with situations that enhance them to develop skills, concepts, strategies, representations, attitudes, constructs and operations concerning a wide range of mathematical notions. Recently there is scientific interest in linking children’s informal and formal knowledge in order to provide them with opportunities to avoid biases aiming at formulating, perceiving, reflecting on and exercising probabilistic notions. The current study investigates preschoolers’ (N=90) intuitive understanding of the likelihood of events in a probabilistic task with spinners. Participants, at the age of 4 to 6, are tested on their predictions of the most probable outcome prior to and after an instructive session of reasoning. The probabilistic task, based on constructivist principles, includes methodological alterations concerning the sample space and the themes of the stimuli. Educational implications are further discussed under the general point of view that in order to link informal to formal mathematical learning in preschool classroom, the subject content and the cognitive capacity of children are important to match.

Keywords

Informal knowledge Intuitive thinking Probabilistic thinking Preschool education 

Resumen

Los niños en edad preescolar desarrollan un conocimiento matemático informal y un pensamiento intuitivo antes de comenzar la educación formal, orientada a la búsqueda de objetivos. En sus actividades cotidianas, los niños pequeños participan en situaciones que promueven el desarrollo de habilidades, percepciones, estrategias, representaciones, actitudes, construcciones y operaciones relacionadas con una amplia gama de conceptos matemáticos. Recientemente existe un interés científico por establecer una relación entre el conocimiento formal e informal de los niños, permitiéndoles así evitar sesgos en la formulación, percepción, razonamiento y/o en el ejercicio de nociones probabilísticas. El presente estudio aborda la comprensión intuitiva de la probabilidad de eventos en niños en edad preescolar (N=90) en un juego probabilístico con discos giratorios. Se examinó la capacidad de los participantes, niños de entre 4 y 6 años de edad, para prever el resultado más probable antes y después de una sesión instructiva de razonamiento. El juego de probabilidades, basado en los principios del constructivismo, incluye cambios metodológicos relacionados con el espacio de muestra y el tema del estímulo. Se discuten las implicaciones educativas bajo la visión general de que, para establecer la conexión del aprendizaje matemático informal con el formal en la enseñanza preescolar, es fundamental establecer una conexión entre el contenido del tema y la capacidad cognitiva de los niños.

Résumé

Les enfants d’âge préscolaire développent une vaste gamme de connaissances mathématiques informelles et de la pensée intuitive avant d’entrer à l’éducation formelle, axée sur des objectifs. Dans leurs activités quotidiennes les jeunes enfants se trouvent engagés dans des situations qui les amènent à développer des habiletés, des concepts, des représentations, des attitudes, des construits et des opérations relatives à une grande étendue de notions mathématiques. Il y a un intérêt scientifique récent à lier les connaissances formelles et informelles des enfants, afin de leur offrir des possibilités d’éviter des préconceptions visant la formulation, la perception, la réflexion et l’exercice de notions probabilistes. La présente étude examine la compréhension intuitive de la vraisemblance d’événements dans une tâche probabiliste avec toupies chez des enfants d’âge préscolaire (N = 90). Les participants, âgés de 4 à 6 ans, sont testés sur leurs prédictions du résultat le plus probable, avant et après une séance de raisonnement instructive. La t âcheprobabiliste, fondée sur des principes constructivistes, comprend des modifications méthodologiques concernant l’échantillonnage et les thèmes du matériel. Les implications pédagogiques sont discutées du point de vue général que pour relier l’apprentissage mathématique informel à l’apprentissage mathématique formel en classe préscolaire, il est important que le contenu de la matière et la capacité cognitive des enfants correspondent.

References

  1. Baroody, A. J. (2004). The developmental bases for early childhood number and operations standards. In D. H. Clements, J. Sarama, & A. M. Dibiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 173–219). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  2. Baroody, A. J., & Ginsburg, H. P. (1986). The Relationship between Initial Meaningful and Mechanical Knowledge of Arithmetic. In J. Hiebert (Ed.), Conceptual and Procedural Knowledge: The Case of Mathematics (pp. 75–112). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  3. Bruner, J. (1960). The process of education. Cambridge: Harvard University Press.Google Scholar
  4. Bruner, J. (1996). The culture of education. Cambridge: Harvard University Press.Google Scholar
  5. Carr, M., Peters, S., & Young-Loveridge, J. (1994). Early childhood mathematics: Finding the right level of challenge. In J. Neyland (Ed.), Mathematics education: A handbook for teachers (pp. 271–282). Wellington: Wellington College of Education.Google Scholar
  6. Clements, D. H., & Sarama, J. (2007). Effects of a preschool mathematics curriculum: summative research on the Building Blocks project. Journal for Research in Mathematics Education, 38, 136–163.Google Scholar
  7. Clements, D. H., & Stephan, M. (2004). Measurement in pre-k to grade 2 mathematics. In D. H. Clements & J. Sarama (Eds.), Engaging young children in mathematics: Standards in early childhood mathematics education (pp. 299–320). Mahwah: Lawrence Erlbaum.Google Scholar
  8. Commission, European. (2006). Classification for learning activities–manuals. Luxembourg: Eurostat.Google Scholar
  9. Conole, M. (2005). Mathematics in early childhood. ACE papers, 16, 91–103.Google Scholar
  10. Copley, J. (2000). The young child and mathematics. Washington DC: National Association for the Education of Young Children.Google Scholar
  11. Denison, S., Konopczynski, K., Garcia, V., and Xu, F. (2006). Probabilistic reasoning in preschoolers: random sampling and base rate. In R. Sun and N. Miyake (eds.), Proceedings of the 28 th Annual Conference of the Cognitive Science Society (pp. 1216-1221).Google Scholar
  12. DeVries, R., Zan, B., Hildebrandt, C., Edmiaston, R., & Sales, C. (2002). Developing constructivist early childhood curriculum: Practical principles and activities. New York: Teachers College Press.Google Scholar
  13. Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht: Reidel.CrossRefGoogle Scholar
  14. Ginsburg, H. P. (2009). The challenge of formative assessment in mathematics education: Children’s minds, teachers’ minds. Human Development, 52, 109–128.CrossRefGoogle Scholar
  15. Ginsburg, H., Greenes, C., & Balfanz, R. (2003). Big math for little kids. Parsippany: Dale Seymour Publications.Google Scholar
  16. Ginsburg, H. P., Lee, J. S., & Boyd, J. S. (2008). Mathematics education for young children: What it is and how to promote it. Social Policy Report of the Society for Research in Child Development, 22, 3–23.Google Scholar
  17. Greenes, C. (1999). Ready to learn: Developing young children’s mathematical powers. In J. Copley (Ed.), Mathematics in the early years (pp. 39–47). Reston: National Council of Teachers of Mathematics.Google Scholar
  18. Greenes, C., Ginsburg, H., & Balfanz, R. (2004). Big math for little kids. Early Childhood Research Quarterly, 19, 159–166.CrossRefGoogle Scholar
  19. Jonassen, David H., & Grabowski, Barbara L. (1993). Handbook of individual difference, learning and instruction. Hillsdale: Lawrence Erlbaum Associates, Publishers.Google Scholar
  20. Jones, M., & Brader-Araje, L. (2002). The impact of constructivism on education: Language, discourse, and meaning. American Communication Journal, 5, 1–9.Google Scholar
  21. Jones, G., Langrall, C., Thornton, C., & Mogill, T. (1997). A framework for assessing and nurturing young children’s thinking in probability. Educational studies in Mathematics, 32, 101–125.CrossRefGoogle Scholar
  22. Kushnir, T., & Gopnik, A. (2005). Young children infer causal strength from probabilities and interventions. Psychological Science, 16(9), 678–683.CrossRefGoogle Scholar
  23. Langrall, C. W., & Mooney, E. S. (2005). Characteristics of elementary school students’ probabilistic reasoning. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 95–119). Berlin: Springer.CrossRefGoogle Scholar
  24. Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge: MIT Press.Google Scholar
  25. Nikiforidou, Ζ., & Pange, J. (2009). Does the nature and amount of posterior information affect preschooler’s inferences? In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 388–393). Lyon: INRP, France.Google Scholar
  26. Nikiforidou, Z., & Pange, J. (2010). Τhe notions of chance and probabilities in preschoolers. Early Childhood Education Journal, 38(4), 305–311.CrossRefGoogle Scholar
  27. Piaget, J. (1970). Genetic epistemology. New York: W.W. Norton and Company.Google Scholar
  28. Pratt, D. (2000). Making sense of the total of two dice. Journal for Research in Mathematics Education, 31(5), 602–625.CrossRefGoogle Scholar
  29. Sarama, J., & Clements, D. H. (2006). Introducing geometry to young children. Early Childhood Today, 20(7), 12–13.Google Scholar
  30. Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. London: Routledge.Google Scholar
  31. Seo, K., & Ginsburg, H. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from new research. In D. Clements, J. Sarama, & A. Dibiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 91–104). Hillsdale: Erlbaum.Google Scholar
  32. Skoumpourdi, C., Kafoussi, S., & Tatsis, K. (2009). Designing probabilistic tasks for kindergartners. Journal of Early Childhood Research, 7(2), 115–134.CrossRefGoogle Scholar
  33. Spinillo, A. G. (2002). Children’s use of part–part comparisons to estimate probability. Journal of Mathematical Behavior, 21, 357–369.CrossRefGoogle Scholar
  34. Vygotsky, L. S. (1986). The genetic roots of thought and speech. In A. Kozulin (Trans. and Ed.), Thought and language. Cambridge, MA: MIT Press.Google Scholar
  35. Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zoi Nikiforidou
    • 1
  • Jenny Pange
    • 2
  • Theodore Chadjipadelis
    • 3
  1. 1.Department of Education StudiesLiverpool Hope UniversityLiverpoolUK
  2. 2.Department of Early Childhood EducationUniversity of IoanninaIoanninaGreece
  3. 3.Department of Political SciencesAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations