Advertisement

International Journal of Early Childhood

, Volume 44, Issue 1, pp 91–114 | Cite as

The Mathematical Competencies of Toddlers Expressed in Their Play and Daily Life Activities in Norwegian Kindergartens

  • Elin ReikeråsEmail author
  • Inger Kristine Løge
  • Ann-Mari Knivsberg
Original Article

Abstract

Research on toddlers’ mathematical knowledge is sparse. Studies on children’s mathematical competencies before school age have mostly focused on older children. Few of the previous studies have included large groups of toddlers, few have been conducted in natural settings, and few have been directed at a broad field of mathematical knowledge. The objective of this study was to investigate which mathematical competencies a large group of toddlers’ in Norwegian kindergartens expressed through play and daily life activities. A total of 1,003 children participated. Their competencies were registered when they were between 30 and 33 months. The assessment material consisted of 36 items, divided into three main areas: number and counting, geometry and problem solving. The information was collected through authentic assessment; the staff in the kindergartens observed the toddlers’ competencies in play and daily life activities. The competencies were registered as mastered, partly mastered or mastering not yet observed. The toddlers showed mathematical competencies in all areas observed. A wide dispersion was found; both for the total score and the subareas’ scores. The largest variance was found in number and counting. Our participants displayed lower levels of competencies in using number words and reciting number sequences than reported from previous studies and higher competencies in puzzle-making and following instructions on spatial words. The results indicate that the assessment material may be a valuable tool for the preschool teachers in identifying the variety of competencies mastered by the children in kindergarten. The need for future research is highlighted and discussed.

Keywords

Toddlers’ mathematics Authentic assessment Natural settings in Norwegian kindergartens 

Résumé

Les recherches sur les connaissances mathématiques des jeunes enfants sont rares. Les études réalisées sur les compétences mathématiques des enfants avant l’âge scolaire ont surtout porté sur des enfants plus âgés. Peu d’entre elles ont inclus de grands groupes de jeunes enfants, ont été menées en milieu naturel et se sont intéressées à un domaine de connaissances mathématiques large. L’objectif de la présente étude était de savoir quelles compétences mathématiques étaient exprimées dans le jeu et les activités de la vie courante par un grand groupe de jeunes enfants des classes maternelles de Norvège. Au total, 1003 enfants ont participé. Leurs compétences ont été enregistrées lorsqu’ils avaient entre 30 et 33 mois. Le matériel d’évaluation se composait de 36 items, divisés en trois sphères principales: les chiffres et la numération, la géométrie et la résolution de problèmes. Les informations ont été recueillies par des évaluations authentiques; l’équipe présente dans les classes maternelles a observé les compétences des enfants durant les jeux et les activités de la vie courante. Celles-ci étaient enregistrées comme maîtrisées, partiellement maîtrisées ou maîtrise pas encore observée. Les enfants ont montré des compétences mathématiques dans toutes les sphères étudiées. Une grande dispersion a été constatée, tant au score total qu’aux scores des sous sphères. La plus grande variance se trouve à la sphère des chiffres et de la numération. En comparaison avec des études antérieures, nos participants ont des niveaux inférieurs de compétences dans l’utilisation de mots liés aux nombres et dans la récitation de séquences de chiffres, mais ils ont des compétences supérieures pour faire des casse-tête et suivre des consignes sur des mots liés à l’espace. Les résultats indiquent que le matériel d’évaluation pourrait s’avérer un outil valable pour les enseignants de maternelle dans l’identification des différentes compétences maîtrisées par les jeunes enfants de leur classe. Le besoin de poursuivre les recherches est souligné et examiné.

Mots clés

Mathématiques chez les jeunes enfants Évaluation authentique Cadre naturel dans des classes maternelles en Norvège 

Resumen

La investigación en cuanto al conocimiento de matemáticas de niños pequeños es poco abundante. Los estudios de la competencia matemática de niños preescolares se han enfocado, en su mayoría, en niños mayores. Muy pocos de los estudios realizados anteriormente han incluido grandes grupos de niños pequeños, pocos han sido llevados a cabo en entornos naturales, y pocos han estado dirigidos a un amplio campo de conocimiento matemático. El objetivo del presente estudio fue el de determinar qué competencia matemática demostró un grupo grande de niños pequeños de jardines de infancia noruegos a través del juego y actividades diarias. Un total de 1,003 niños participaron. Sus competencias fueron registradas cuando tenían entre 30 y 33 meses de edad. El material de evaluación consistió de 36 artículos, divididos en tres áreas principales: números y conteo, geometría y resolución de problemas. La información fue recabada a través de una evaluación auténtica; el personal de los jardines de infancia observó las competencias de los niños durante sus juegos y actividades de vida diaria. Las actividades fueron registradas como dominadas, parcialmente dominadas o domino aún no observado. Los pequeños niños demostraron competencia matemática en todas las áreas observadas. Se encontró una amplia dispersión, tanto en las puntaciones finales como en las puntuaciones de las sub-áreas. Las variaciones más grandes se encontraron en números y conteo. Nuestros participantes mostraron niveles más bajos de competencia al utilizar los números en palabras y al recitar las secuencias de números en comparación con aquellos reportados en estudios anteriores en donde había mayor competencia en el armar rompecabezas y el seguir instrucciones en palabras espaciadas. Los resultados indican que el material de evaluación puede ser una valiosa herramienta para los maestros de preescolar para identificar la variedad de competencias que son dominadas por los niños en el jardín de infancia. Se resalta y argumenta la necesidad de futurasinvestigaciones.

Palabras clave

Matemática de niños pequeños evaluación auténtica entorno natural en jardines de infancia noruegos 

Notes

Acknowledgments

We want to express our gratitude to all the parents who let their children take part in this study. Without their consent, we could not have obtained this knowledge about the toddlers’ mathematics. Our sincere thanks also go to all the personnel in the kindergartens whose observations and registration during their daily work are the basis for our research. They have done a fantastic job. We also want to express gratitude to our municipality representatives who have supported our collaboration practically and economically since we first presented the idea for the project. We are grateful for funding received from the university, the faculty and our own centre. It would also have pleased us all to share the results from this study with our late colleague and friend, associate professor Synnøve Iversen, PhD, who actively contributed to the project and participated in the first part of it.

References

  1. Acredolo, L. (1990). Behavioral approaches to spatial orientation in infancy. Annals of the New York Academy of Sciences, 608, 596–612.CrossRefGoogle Scholar
  2. Alan, S., & Paul, C. Q. (2001). Face recognition in the newborn infant. Infant and Child Development, 10(1–2), 21–24.Google Scholar
  3. Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241.CrossRefGoogle Scholar
  4. Aunio, P., Aubrey, C., Godfrey, R., Yuejuan, P., & Yan, L. (2008). Children’s early numeracy in England, Finland and People’s Republic of China. International Journal of Early Years Education, 16(3), 203–221.CrossRefGoogle Scholar
  5. Aunio, P., Hautamäki, J., Heiskari, P., & Van Luit, J. E. H. (2006). The early numeracy test in Finnish: children’s norms. Scandinavian Journal of Psychology, 47(5), 369–378.CrossRefGoogle Scholar
  6. Aunola, K., Leskinen, E., Lerkkanen, M., & Nurmi, J. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96(4), 699–713.CrossRefGoogle Scholar
  7. Bagnato, S. J. (2007). Authentic assessment for early childhood intervention: best practices. New York: Guilford Press.Google Scholar
  8. Baroody, A. J., Lai, M.-l., & Mix, K. (2006). The development of young children’s early number and operation sense and its implication for early childhood education. In B. Spodek & O. N. Saracho (Eds.), Handbook of research on the education of young children (pp. 187–221). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  9. Björklund, C. (2007). Hållpunkter för lärande. Småbarns möten med matematik. [Critical Conditions of Learning. Toddlers Encountering Mathematics]. Åbo: Abo Akademi University Press.Google Scholar
  10. Björklund, C. (2008). Toddlers’ opportunities to learn mathematics. International Journal of Early Childhood, 40(1), 81–95.CrossRefGoogle Scholar
  11. Borg, E., Kristiansen, I. H., & Backe-Hansen, E. (2008). Kvalitet og innhold i norske barnehager: en kunnskapsoversikt [Quality and content in Norwegian kindergartens] (Vol. 2008:6). Oslo: Norsk institutt for forskning om oppvekst, velferd og aldring.Google Scholar
  12. Brannon, E. M., Abbott, S., & Lutz, D. J. (2004). Number bias for the discrimination of large visual sets in infancy. Cognition, 93(2), B59–B68.CrossRefGoogle Scholar
  13. Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: learning and memory. Infant and Child Development, 10(1–2), 67–74.CrossRefGoogle Scholar
  14. Chen, Z., & Siegler, R. S. (2000). Across the great divide: Bridging the gap between understanding of toddlers’ and older children’s thinking. Malden, MA: Wiley-Blackwell.Google Scholar
  15. Choi, S., & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41, 83–121.CrossRefGoogle Scholar
  16. Claessens, A., Duncan, G. J., & Engel, M. (2006). Kindergarten skills and fifth grade achievement: evidence from the ECLS-K. Evanston: Northwestern University.Google Scholar
  17. Clearfield, M. W. (2004). The role of crawling and walking experience in infant spatial memory. Journal of Experimental Child Psychology, 89(3), 214–241.CrossRefGoogle Scholar
  18. Clements, D. H., & Sarama, J. A. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.Google Scholar
  19. Coolican, H. (2004). Research methods and statistics in psychology (4th ed.). London: Hodder & Stoughton.Google Scholar
  20. Cordes, S., & Brannon, E. M. (2009). The relative salience of discrete and continuous quantity in young infants. Developmental Science, 12(3), 453–463.CrossRefGoogle Scholar
  21. Davidsen, H., Løge, I. K., Lunde, O., Reikerås, E., & Dalvang, T. (2008a). MIO-Matematikken-Individet-Omgivelsene. Observasjonsark. [MIO—The Mathematics, the individual and the environment. Registration form.] Oslo: Aschehoug.Google Scholar
  22. Davidsen, H., Løge, I. K., Lunde, O., Reikerås, E., & Dalvang, T. (2008b). MIO, Matematikken, Individet og Omgivelsene. Håndbok. [MIO, the mathematics, the individual and the environment. Handbook.] Oslo: Aschehoug.Google Scholar
  23. DeLoache, J. S., Cassidy, D. J., & Brown, A. L. (1985). Precursors of mnemonic strategies in very young children’s memory. Child Development, 56(1), 125–137.CrossRefGoogle Scholar
  24. Dowker, A. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 324–332.CrossRefGoogle Scholar
  25. Downer, J. T., Booren, L. M., Lima, O. K., Luckner, A. E., & Pianta, R. C. (2010). The Individualized Classroom Assessment Scoring System (inCLASS): preliminary reliability and validity of a system for observing preschoolers’ competence in classroom interactions. Early Childhood Research Quarterly, 25(1), 1–16.CrossRefGoogle Scholar
  26. Durkin, K., Shire, B., Riem, R., Crowther, R. D., & Rutter, D. R. (1986). The social and linguistic context of early number word use. British Journal of Developmental Psychology, 4, 269–288.CrossRefGoogle Scholar
  27. English, L. D. (2004). Mathematical and analogical reasoning in early childhood. In L. D. English (Ed.), Mathematical and analogical reasoning of young learners (pp. 1–22). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  28. Fluck, M. J. (1995). Counting on the right number: maternal support for the development of cardinality. The Irish Journal of Psychology, 16(2), 133–149.Google Scholar
  29. Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer-Verlag.CrossRefGoogle Scholar
  30. Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. S. (1993). Even before formal instruction, Chinese children outperform American children in mental addition. Cognitive Development, 8(4), 517–529.CrossRefGoogle Scholar
  31. Geist, E. (2009). Children are born mathematicians: Supporting mathematical development, birth to age 8. Upper Saddle River, NJ: Merrill/Pearson.Google Scholar
  32. Geist, K., & Geist, E. (2008). Do Re Mi, 1–2–3: That’s how easy math can be—using music to support emergent mathematics. Young Children, 63(2), 20–25.Google Scholar
  33. Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, Mass.: Harvard University Press.Google Scholar
  34. Gentner, D. (2008). Learning about Space. In C. Hölscher, T. F. Shipley, M. O. Belardinelli, J. A. Bateman, & N. S. Newcombe (Eds.), Spatial cognition VI. Learning, reasoning, and talking about space (p. 7). International conference.Google Scholar
  35. Gersten, R., Jordan, N., & Flojo, J. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293–304.CrossRefGoogle Scholar
  36. Golomb, C. (1981). Representation and reality: The origins and determinants of young children’s drawings. Review of Research in Visual Arts Education, 7(2), 36–48.Google Scholar
  37. Golomb, C. (2004). The child’s creation of a pictorial world (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  38. Goswami, U. (2001). Analogical reasoning in children. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: perspectives from cognitive science (pp. 437–470). Cambridge, MA: MIT Press.Google Scholar
  39. Greve, A., & Solheim, M. (2010). Research on children in ECEC under three in Norway: Increased volume, yet invisible. International Journal of Early Childhood, 42(2), 155–163.CrossRefGoogle Scholar
  40. Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15, 237–256.CrossRefGoogle Scholar
  41. Jensen, B. (2009). A Nordic approach to early childhood education (ECE) and socially endangered children. European Early Childhood Education Research Journal, 17(1), 7–21.CrossRefGoogle Scholar
  42. Klokk, B. T. (2010). Flere og bedre innmeldinger [More and better applications]. Univers, 4(4), 41.Google Scholar
  43. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35(4), 940–949.CrossRefGoogle Scholar
  44. Locuniak, M. N., & Jordan, N. C. (2008). Using kindergarten number sense to predict calculation fluency in second grade. Journal of Learning Disabilities, 41(5), 451–459.CrossRefGoogle Scholar
  45. Løge, I. K., & Lunde, O. (2008). Statistisk analyse av observasjonspunktene i MIO [Statistical analysis of the observation items in MIO]. http://www.statped.no/nyupload/Moduler/Statped/Enheter/Sørlandet/Bibliotek%20og%20Publikasjoner/Artikler/Matematikkmestring/Statistisk%20analyse%20av%20observasjonspunktene%20-%20Løge%20og%20Lunde.pdf.
  46. Magne, O. (2003). Barn oppdager matematikk [Children discover mathematics]. Klepp stasjon: Info Vest.Google Scholar
  47. Mazzocco, M., & Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice, 20(3), 142–155.CrossRefGoogle Scholar
  48. Ministry of Education and Research (2003). Curriculum regulations for general teacher education, preschool teacher education and practical and didactic education. http://www.regjeringen.no/upload/kilde/kd/pla/2006/0002/ddd/pdfv/235560-rammeplan_laerer_eng.pdf. Oslo: Ministry of Education and Research.
  49. Ministry of Education and Research. (2006a). Framework plan for the content and tasks of Norwegian kindergartens. Oslo: Ministry of Education and Research.Google Scholar
  50. Ministry of Education and Research (2006b). Stortingsmelding nummer 16 (2006–2007)…og ingen stod igjen. Tidlig innsats for livslang læring. [Report to the Storting number 16 (2006–2007)…no one left behind. Early intervention for lifelong learning.] Oslo: Ministry of Education and Research.Google Scholar
  51. Mix, K. S., Levine, S. C., & Huttenlocher, J. (2002). Quantitative development in infancy and early childhood. Oxford: Oxford University Press.CrossRefGoogle Scholar
  52. Montford, E. I. P., & Readdick, C. A. (2008). Puzzlemaking and part-whole perception of two-year-old and four-year-old children. Early Child Development and Care, 178(5), 537–550.CrossRefGoogle Scholar
  53. Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representations and reasoning. A Bradford book. Cambridge, MA: The MIT Press.Google Scholar
  54. Oakes, L. M., & Madole, K. L. (2003). Principles of developmental change in infants’ category formation. In D. H. Rakison & L. M. Oakes (Eds.), Early category and concept learning (pp. 132–158). New York: Oxford University Press.Google Scholar
  55. OECD. (2006). Starting strong II. Early childhood education and care. Paris: Organization for Economic Co-operation and Development.Google Scholar
  56. Pallant, J. (2007). SPSS survival manual: A step-by-step guide to data analysing using SPSS for Windows. Maidenhead: McGraw-Hill; Open University Press.Google Scholar
  57. Perry, B., & Dockett, S. (2002). Young children’s access to powerful mathematical ideas. In L. D. English & M. G. B. Bussi (Eds.), Handbook of international research in mathematics education (pp. 81–112). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  58. Piaget, J., & Inhelder, B. (2002). Barnets psykologi [The psychology of the child]. København: Hans Reitzels forlag.Google Scholar
  59. Reikerås, E. (2008). Observasjonspunktene [The observations items]. In H. Davidsen, I. K. Løge, O. Lunde, E. Reikerås & T. Dalvang (Eds.), MIO MatematikkenIndividetOmgivelsene. Håndbok [MIO, The mathematics, the individual and the environment. Handbook]. (pp. 30–47). Oslo: Aschehoug & Co.Google Scholar
  60. Säljö, R. (2001). Læring i praksis: et sosiokulturelt perspektiv [Learning through practice: a socio cultural perspective]. Oslo: Cappelen akademisk.Google Scholar
  61. Sarama, J. A., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.Google Scholar
  62. Semrud-Clikeman, M. (2007). Social competence in children. New York: Springer.Google Scholar
  63. Seo, K., & Ginsburg, H. P. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from new research. In D. H. Clements, J. A. Sarama, & A.-M. DiBiase (Eds.), Engaging young children in mathematics. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  64. Solem, I. H., & Reikerås, E. (2008). Det matematiske barnet. [The mathematical child] (2nd ed.). Landås: Caspar.Google Scholar
  65. Sophian, C. (2008). Rethinking the starting point for mathematics learning. In O. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 21–44). Charlotte, NC: Information Age Publishing.Google Scholar
  66. Sophian, C., & Kailihiwa, C. (1998). Units of counting: Developmental changes. Cognitive Development, 13(4), 561–585.CrossRefGoogle Scholar
  67. Spelke, E., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89–96.CrossRefGoogle Scholar
  68. Starkey, P., Klein, A., & Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99–120.CrossRefGoogle Scholar
  69. Stevenson, H. W. (1987). The Asian advantage. The case of mathematics. American Educator, 47, 26–31.Google Scholar
  70. Tabachnick, B. G., & Fidell, L. S. (2006). Using multivariate statistics (5th ed.). New York: Harper Collins.Google Scholar
  71. Tudge, J., Li, L., & Stanley, K. (2008). The impact of method on assessing young children’s everyday mathematical experiences. In O. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education. Charlotte, NC: Information Age Publishing.Google Scholar
  72. Vygotskij, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  73. Vygotskij, L. S., & Davydov, V. V. (1997). Educational psychology. Boca Raton, FL: St. Lucie Press.Google Scholar
  74. Wellman, H. M., Fabricius, W. V., & Sophian, C. (1985). The early development of planning. In H. M. Wellman (Ed.), Children’s searching: The development of search skill and spatial representation (pp. 123–149). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  75. Wood, J. N., & Spelke, E. (2005). Infants’ enumeration of actions: numerical discrimination and its signature limits. Developmental Science, 8(2), 173–181.CrossRefGoogle Scholar
  76. Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220–251.CrossRefGoogle Scholar
  77. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11.CrossRefGoogle Scholar
  78. Xu, F., Spelke, E., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88–101.CrossRefGoogle Scholar
  79. Yuzawa, M., Bart, W. M., Kinne, L. J., Sukemune, S., & Kataoka, M. (1999). The effect of “origami” practice on size comparison strategy among young Japanese and American children. Journal of Research in Childhood Education, 13(2), 133–143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Elin Reikerås
    • 1
    Email author
  • Inger Kristine Løge
    • 2
  • Ann-Mari Knivsberg
    • 1
  1. 1.Faculty of Arts and Education, National Centre for Reading Education and ResearchUniversity of StavangerStavangerNorway
  2. 2.Faculty of Arts and Education, Centre for Behavioural ResearchUniversity of StavangerStavangerNorway

Personalised recommendations