Skip to main content

Advertisement

Log in

The Mangrove Forest of Quirimbas National Park Reveals High Carbon Stock Than Previously Estimated in Southern Africa

  • Wetland Ecology
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Mangrove forests are known to store large amounts of carbon and provide several essential ecosystem services. Although mangrove forests vary across tropical and subtropical regions, forest conservation mechanisms have recognised the role of mangroves in climate change mitigation. Nevertheless, little about the total C stock in mangrove forests on the southern African coast has been reported. This is particularly true in Mozambique, where the coastline is covered with highly diversified mangrove forests, and there is still a lack of reports about its C stocks in mangrove forests. This work aims to quantify the above- and below-ground carbon stocks, and describe mangrove structure and species composition in the Quirimbas National Park (QNP), northern Mozambique. Based on a random sampling design, we established 41 circular plots. In each plot, we assessed alive trees, standing dead trees, litter, pneumatophores, woody debris, soil organic carbon (SOC) and natural regeneration, and C stock was quantified. We employed Parametric and Non-parametric statistical tests to check the differences between vegetation and soil parameters. Our study recorded six tree species in the mangrove forest of QNP with a stem density of 1222 ± 123 stem ha− 1 and 16.1 ± 2.1 m2 ha− 1 of basal area. The Importance Value Index indicated that Rhizophora mucronata is the most abundant, frequent, and dominant, while Xylocarpus granatum is the rarest in the area. The mangrove of QNP stores about 306.1 ± 49.4 Mg C ha− 1 of SOC (0-100 cm), 72.6 ± 11.7 Mg C ha− 1 of above-ground carbon, and 32.0 ± 5.0 Mg C ha− 1 of root carbon stock. The total C stock stored in the QNP mangrove forests is 410.2 ± 66.1 Mg C ha− 1 comparable to the most extensive mangrove forest in southern Africa. This study can foster meaningful progress in understanding the carbon cycling in Mangrove ecosystems and its potential role on climate change mitigation in southern Africa.

Resumo

Os mangais armazenam grandes quantidades de carbono (C) e fornecem vários serviços de ecossistema importantes. Apesar de os mangais variarem entre regiões tropicais e subtropicais, os mecanismos internacionais de conservação florestal reconheceram o papel dos mangais na mitigação das mudanças climáticas. Todavia, pouco foi relatado sobre a reserva total de C nos mangais da costa sul da África, particularmente em Moçambique, onde o litoral é coberto por mangais altamente diversificados. Este trabalho visa quantificar as reservas de C acima e abaixo do solo bem como descrever a estrutura e composição florística do mangal do Parque Nacional das Quirimbas (PNQ), norte de Moçambique. Com base em amostragem aleatória, estabeleceu-se 41 parcelas circulares e em cada parcela, avaliou-se árvores vivas e mortas em pé, liteira, pneumatóforos, resíduos de madeira, solo orgânico e regeneração natural, e quantificou-s a reserva de C. Testes estatísticos paramétricos e não paramétricos foram usados para verificar as diferenças entre os parâmetros de vegetação e solos. Neste estudo, registou-se seis espécies de árvores de mangal e 1222 ± 123 árvores ha− 1, com uma área basal de 16,1 ± 2,1 m2 ha− 1. O índice de valor de importância indicou que a Rhizophora mucronata é a mais abundante, frequente e dominante, enquanto a Xylocarpus granatum é a mais rara na área. O mangal do PNQ armazena cerca de 306,1 ± 49,4 Mg C ha− 1 de C orgânico do solo (0-100 cm), 72,6 ± 11,7 Mg C ha− 1 de C acima do solo, e 32,0 ± 5,0 Mg C ha− 1 de C das raízes. O C total do mangal do PNQ foi estimado em 410,2 ± 66,1 Mg C ha− 1. Estes resultados confirmam que os mangais armazenam uma quantidade significativa de reserva de C e o estimado no PNQ têm o potencial de desempenhar um papel significativo na mitigação das mudanças climáticas na África austral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available upon reasonable request.

References

  • Adame MF, Kauffman JB, Medina I, Gamboa JN, Torres O, Caamal JP, Reza M, Herrera-Silveira JA (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One 8(2). https://doi.org/10.1371/journal.pone.0056569

  • Adame MF, Santini NS, Tovilla C, Vázquez-Lule A, Castro L, Guevara M (2015) Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12(12):3805–3818. https://doi.org/10.5194/bg-12-3805-2015

    Article  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environmental Conservation 29(3):331–349. https://doi.org/10.1017/S0376892902000231

    Article  Google Scholar 

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76:1–13. https://doi.org/10.1016/j.ecss.2007.08.024

    Article  Google Scholar 

  • Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Management 3(3):313–322. https://doi.org/10.4155/cmt.12.20

    Article  CAS  Google Scholar 

  • Angelsen A, Brockhaus M, Kanninen M, Sills E, Sunderlin WD, Wertz-Kanounnikof S (2009) Realising REDD+: national strategy and policy options. CIFOR, Bogor

    Google Scholar 

  • Bandeira S, Barbosa F, Bila N, Azevedo F Jr, Nacamo E, Manjate AM, Mafambissa M, Rafael J (2007) Terrestrial vegetation assessment of the Quirimbas national park. final report. Cabo Delgado Province, Mozambique

  • Bandeira SO, Macamo CCF, Kairo JG, Amade F, Jiddawi N, Paula J (2009) Evaluation of mangrove structure and condition in two trans-boundary areas in the western Indian ocean. Aquatic Conservation: Marine and Freshwater Ecosystems 55:46–55. https://doi.org/10.1002/aqc.1044

    Article  Google Scholar 

  • Barbosa FMA, Cuambe CC, Bandeira SO (2001) Status and distribution of mangroves in Mozambique. South African Journal of Botany 67(3):393–398. https://doi.org/10.1016/S0254-6299(15)31155-8

    Article  Google Scholar 

  • Benson L, Glass L, Jones TG, Ravaoarinorotsihoarana L, Rakotomahazo C (2017) Mangrove carbon stocks and ecosystem cover dynamics in southwest Madagascar and the implications for local management. Forests 8(6):1–21. https://doi.org/10.3390/f8060190

    Article  CAS  Google Scholar 

  • Bhomia RK, Kauffman JB, McFadden TN (2016) Ecosystem carbon stocks of mangrove forests along the pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management 24(2):187–201. https://doi.org/10.1007/s11273-016-9483-1

    Article  CAS  Google Scholar 

  • Bosire JO, Kaino JJ, Olagoke AO, Mwihaki LM, Ogendi GM, Kairo JG, Berger U, Macharia D (2014) Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya. Biogeosciences 11(10):2623–2634. https://doi.org/10.5194/bg-11-2623-2014

    Article  Google Scholar 

  • Bosire J, Salomao B, Rafel J (2012) Coastal climate change mitigation and adaptation through REDD + carbon programmes in mangroves ves in Mozambique: pilot in the Zambezi delta. Determination of carbon stocks through localised allometric equations component. WWF, Maputo, Mozambique

  • Campira J, Munjovo ET, Cianciullo S, Nicosia E, Macamo C (2021) Mozambique land use and land use change assessment (2001–2020): Mangrove forests case study. Maputo, Mozambique

  • Dahdouh-Guebas F, Mathenge C, Kairo JG, Koedam N (2000) Utilisation of mangrove wood products around Mida Creek ‘Kenya’ amongst subsistence and commercial users. Economic Botany 54(4):513–527. https://doi.org/10.1007/BF02866549

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5):293–297. https://doi.org/10.1038/ngeo1123

    Article  CAS  Google Scholar 

  • FAO (2007) The world’s Mangroves 1980–2005. FAO, Rome

    Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters 2(4). https://doi.org/10.1088/1748-9326/2/4/045023

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20(1):154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

    Article  Google Scholar 

  • GRNB (2009) Biodiversity Baseline of the Quirimbas National Park, Mozambique. Final report, consultancy. GRNB. Eduardo Mondalne University, Maputo, Mozambique

  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography 25(6):729–738. https://doi.org/10.1111/geb.12449

    Article  Google Scholar 

  • Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change 8(3):240–244. https://doi.org/10.1038/s41558-018-0090-4

    Article  CAS  Google Scholar 

  • Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E (2014) Methods for assessing Carbon stocks and emissions factors in Mangroves, Tidal Salt Marshes, and Seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA

  • INGC (2009) Estudo Sobre o Impacto Das Alterações Climáticas No Risco de calamidades em Moçambique Relatório Síntese – Segunda Versão. INGC, Maputo, Mozambique

    Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:2

    Article  Google Scholar 

  • Kairo JG, Dahdouh-Guebas F, Bosire J, Koedam N (2001) Restoration and management of mangrove systems - a lesson for and from the East African region. South African Journal of Botany 67(3):383–389. https://doi.org/10.1016/S0254-6299(15)31153-4

    Article  Google Scholar 

  • Kairo JG, Dahdouh-Guebas F, Gwada PO, Ochieng C, Koedam N (2002) Regeneration status of Mangrove forests in Mida Creek, Kenya: a compromised or secured future? Ambio 31(7–8):562–568. https://doi.org/10.1579/0044-7447-31.7.562

    Article  PubMed  Google Scholar 

  • Kauffman JB, Bhomia RK (2017) Ecosystem carbon stocks of mangroves across broad environmental gradients in west-central Africa: global and regional comparisons. PLoS One 12(11):1–17. https://doi.org/10.1371/journal.pone.0187749

    Article  CAS  Google Scholar 

  • Kauffman JB, Donato DC (2012) Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR, Bogor

    Google Scholar 

  • Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31(2):343–352. https://doi.org/10.1007/s13157-011-0148-9

    Article  Google Scholar 

  • Kauffman JB, Heider C, Norfolk J, PaytoN F (2014) Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican republic. Ecological Applications 24(3):518–527. https://doi.org/10.1890/13-0640.1

    Article  PubMed  Google Scholar 

  • Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21(4):471–477. https://doi.org/10.1017/S0266467405002476

    Article  Google Scholar 

  • Krebs CJ (2014) Ecology: the experimental analysis of distribution and abundance. Pearson Education Limited, US

    Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. Forest Ecology and Management 220:242–258. https://doi.org/10.1016/j.foreco.2005.08.015

    Article  Google Scholar 

  • Lisboa SN, Woollen E, Grundy IM, Ryan CM, Smith HE, Zorrilla-Miras P, Baumert S, Ribeiro N, Vollmer F, Holland M, Sitoe A (2020) Effect of charcoal production and woodland type on soil organic carbon and total nitrogen in drylands of southern Mozambique. Forest Ecology and Management 457:117692. https://doi.org/10.1016/j.foreco.2019.117692

    Article  Google Scholar 

  • Macamo CCF, Adams JB, Bandeira SO, Mabilana HA, António VM (2018) Spatial dynamics and structure of human disturbed mangrove forests in contrasting coastal communities in Eastern Africa. Wetlands 38(3):509–523. https://doi.org/10.1007/s13157-018-0996-7

    Article  Google Scholar 

  • Macamo CCF, Balidy H, Bandeira SO, Kairo JG (2015) Mangrove transformation in the Incomati Estuary, Maputo Bay, Mozambique. Western Indian Ocean Journal of Marine Science 14(1):11–22

    Google Scholar 

  • Macamo C, Cangy F, Bandeira S (2008) Formas de Uso, Estrutura e Estado de Conservação de Mangal de Mieze e Muchara - Baía de Pemba, Cabo Delgado. Universidade Eduardo Mondlane and Instituto Nacional de Investigação Pesqueira. Maputo, Mozambique

    Google Scholar 

  • Macamo CCF, Massuanganhe E, Nicolau DK, Bandeira SO, Adams JB (2016) Mangrove’s response to cyclone Eline (2000): what is happening 14 years later. Aquatic Botany 134(July 2018):10–17. https://doi.org/10.1016/j.aquabot.2016.05.004

  • Machava-António V, Fernando A, Cravo M, Massingue M, Lima H, Macamo C, Bandeira, Paula J (2022) A comparison of Mangrove Forest structure and ecosystem services in Maputo Bay (Eastern Africa) and Pr í ncipe Island (Western Africa). Forests 13:1466

    Article  Google Scholar 

  • Magalhães TM (2018) Carbon storage in secondary mangroves along the West Coastline of Maputo City, Mozambique. Wetlands 39(2):239–249. https://doi.org/10.1007/s13157-018-1104-8

    Article  Google Scholar 

  • Magurran AE (2004) Measuring Biologcial Diversity. Blackwell, Hoboken

    Google Scholar 

  • Maniatis D, Mollicone D (2010) Options for sampling and stratification for national forest inventories to implement REDD + under the UNFCCC. Carbon Balance and Management 5(1):9. https://doi.org/10.1186/1750-0680-5-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Bai J, Gou R, Cui X, Feng J, Dai Z, Diao X, Zhu X, Lin G (2021) Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon Balance and Management 16(1):1–14. https://doi.org/10.1186/s13021-021-00172-9

    Article  Google Scholar 

  • MIMAIP (2018) Estratégia nacional e plano de acção para a gestão do mangal em Moçambique 2018–2023. MIMAIP, Maputo

    Google Scholar 

  • MITUR (2003) Plano de Maneio Parque Nacional Das Quirimbas. MITUR, Maputo, Mozambique

    Google Scholar 

  • MITUR (2014) Parque Nacional Das Quirimbas Plano de Maneio Conteúdos. MITUR, Maputo, Mozambique

    Google Scholar 

  • Mohamed MOS, Neukermans G, Kairo JG, Dahdouh-Guebas F, Koedam N (2009) Mangrove forests in a peri-urban setting: the case of Mombasa (Kenya). Wetlands Ecology and Management 17:243–255. https://doi.org/10.1007/s11273-008-9104-8

    Article  Google Scholar 

  • Mungai F, Kairo J, Mironga J, Kirui B, Mangora M, Koedam N, Mungai F, Kairo J, Mironga J, Kirui B, Mangora M (2019) Mangrove cover and cover change analysis in the transboundary area of Kenya and Tanzania during 1986–2016. Journal of the Indian Ocean Region. https://doi.org/10.1080/19480881.2019.1613868

    Article  Google Scholar 

  • Murdiyarso D, Donato D, Kauffman JB, Kurnianto S, Stidham M, Kanninen M (2009) Carbon storage in mangrove and peatland ecosystems. CIFOR, Bogor

    Google Scholar 

  • Nicolau DK, Macamo CD, Bandeira SO, Tajú A, Mabilana HA (2017) Mangrove change detection, structure and condition in a protected area of Eastern Africa: the case of Quirimbas national park, Mozambique. Western Indian Ocean Journal of Marine Science 17(2):856–860

    Google Scholar 

  • Njana MA (2020) Structure, growth, and sustainability of mangrove forests of mainland Tanzania. Global Ecology and Conservation 24:e01394. https://doi.org/10.1016/j.gecco.2020.e01394

    Article  Google Scholar 

  • Njana MA, Bollandsås OM, Eid T, Zahabu E, Malimbwi RE (2015) Above- and belowground tree biomass models for three mangrove species in Tanzania: a nonlinear mixed effects modelling approach. Annals of Forest Science 73(2):353–369. https://doi.org/10.1007/s13595-015-0524-3

    Article  Google Scholar 

  • Njiru DM, Githaiga MN, Nyaga JM, Lang’at KS, Kairo JG (2022) Geomorphic and climatic drivers are key determinants of structural variability of Mangrove forests along the kenyan coast. Forests 13:870. https://doi.org/10.3390/f13060870

    Article  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Joanna C, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone RS, Miyagi T, Moore GE, Nam VN, Ong JE (2010) The loss of species: mangrove extinction risk and Geographic Areas of Global concern. PLoS One 5(4). https://doi.org/10.1371/journal.pone.0010095

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org

  • Renzas JM, Marín-spiotta E (2012) A primer on methods for measuring Soil Carbon. University of Wisconsin-Madison, Wisconsin

    Google Scholar 

  • Robert EMR, Oste J, Stocken TVD, Ryck DJRD, Quisthoudt K, Kairo JG, Dahdouh-guebas F, Koedam N, Schmitz N (2015) Viviparous mangrove propagules of Ceriops tagal and Rhizophora mucronata, where both Rhizophoraceae show different dispersal and establishment strategies. Journal of Experimental Marine Biology and Ecology 468:45–54. https://doi.org/10.1016/j.jembe.2015.03.014

    Article  Google Scholar 

  • Sandilyan S, Kathiresan K (2015) Mangroves as Bioshield: an undisputable fact. Ocean & Coastal Management 103:94–96. https://doi.org/10.1016/j.ocecoaman.2014.11.011

    Article  Google Scholar 

  • Scales IR, Friess DA (2019) Patterns of Mangrove forest disturbance and biomass removal due to small-scale harvesting in southwestern Madagascar. Wetlands Ecology and Management 27:609–625. https://doi.org/10.1007/s11273-019-09680-5

    Article  CAS  Google Scholar 

  • Sitoe AA, Guedes BS, Nhantumbo S (2013) Monitoria, Relatório e Verificação para o REDD + em Moçambique. Maputo, Mozambique

    Google Scholar 

  • Sitoe AA, Mandlate LJ, Guedes BS (2014) Biomass and Carbon stocks of Sofala Bay Mangrove forests. Forests 5(8):1967–1981. https://doi.org/10.3390/f5081967

    Article  Google Scholar 

  • Stringer CE, Trettin CC, Zarnoch SJ, Tang W (2015) Carbon stocks of Mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management 354:139–148. https://doi.org/10.1016/j.foreco.2015.06.027

    Article  Google Scholar 

  • Trettin CC, Stringer CE, Zarnoch SJ (2016) Composition, biomass and structure of Mangroves within the Zambezi River Delta. Wetlands Ecology and Management 24(2):173–186. https://doi.org/10.1007/s11273-015-9465-8

    Article  Google Scholar 

  • UNEP (2014) The importance of Mangroves to people: a call to action. United Nations Environment Programme World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Science 37:29–38

    Article  CAS  Google Scholar 

  • Wendling B, Jucksch I, Sá E, César J, Neves L (2005) Carbono Orgânico e Estabilidade de Agregados de Um Latossolo Vermelho Sob Diferentes Manejos. Pesquisa Agropecuária Brasileira 40(5):487–494

    Article  Google Scholar 

  • Williams M, Ryan CM, Rees RM, Sambane E, Fernando J, Grace J (2008) Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique. Forest Ecology and Management 254(2):145–155. https://doi.org/10.1016/j.foreco.2007.07.033

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Quirimbas National Park for field support. Furthermore, the authors thank the Department of Forest Engineering for laboratory support. We also thank Dr. Edith Oliveira De Encarnacão for logistic support and Sir Issa Iacubo for field assistance.

Funding

This study was supported by Aga Khan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Focas Francisco Bacar, Sá Nogueira Lisboa and Almeida Sitoe. The first draft of the manuscript was written by Focas Francisco Bacar, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Focas Francisco Bacar.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacar, F.F., Lisboa, S.N. & Sitoe, A. The Mangrove Forest of Quirimbas National Park Reveals High Carbon Stock Than Previously Estimated in Southern Africa. Wetlands 43, 60 (2023). https://doi.org/10.1007/s13157-023-01707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-023-01707-1

Keywords

Palavras-chave

Navigation