Skip to main content

Advertisement

Log in

Wildfires Jeopardise Habitats of Hyacinth Macaw (Anodorhynchus hyacinthinus), a Flagship Species for the Conservation of the Brazilian Pantanal

  • Wetland Conservation
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Changes in fire regimes can increase extinction risk of species with distribution restricted to fire-prone habitats. The extent of the area burnt in the Brazilian Pantanal reached a record high in 2020, resulting in an environmental catastrophe. This globally important wetland is the main area of occurrence of the Hyacinth Macaw (Anodorhynchus hyacinthinus). Distribution modelling suggests that the macaw occupies areas, where its major food sources, the palms Attalea phalerata and Acrocomia aculeata are present and Sterculia apetala provides nesting hollows. To estimate the proportion of suitable habitat lost to fire over the years, we overlaid modelled distributions of the macaw and two plant species (Attalea phalerata and Sterculia apetala) with the extent of area burnt in the Pantanal in 2003–2020. We estimated the phenological predictability of the two food plants and evaluated the consequences of fire on the availability of these resources. Considering historical fire recurrence data, Anodorhynchus hyacinthinus, Sterculia apetala, and Attalea phalerata are predominantly present in areas with no or low annual fire occurrence. We found that over 25% of Hyacinth Macaw habitat had been affected by fire in 2020, which is about five times higher than the historical annual average. The length and seasonality of the fire season was confirmed by circular statistics, suggesting that the number of large fires increased in 2020 compared to the historical series. Consequently, in the catastrophic season of 2020, wildfires were much more extensive and occurred earlier in the year. We did not detect significant correlation between food availability and historical fire seasonality. Hence, it difficult to predict how changes in the temporal pattern of fires may affect resource availability for the macaw. Moreover, the macaw’s peak egg laying occurs in August and nestlings hatch around September, and habitat loss resulting from megafires can compromise the conservation of even large, flying species. This justifies adaptive fire management as an important conservation action to preserve suitable habitat for the Hyacinth Macaw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Available as supplementary material.

Code Availability

Not applicable.

References

  • Albuquerque-Lima S, Domingos-Melo A, Nadia TC, Bezerra EL, Navarro DM, Milet-Pinheiro P, Machado IC (2020) An explosion of perfume: mass flowering and sphingophily in the Caatinga dry region in Brazil. Plant Species Biol 35:243–255. https://doi.org/10.1111/1442-1984.12277

    Article  Google Scholar 

  • Abrahamson WG (1999) Episodic reproduction in two fire-prone palms, Serenoa repens and Sabal etonia (Palmae). Ecology 80:100–115

    Google Scholar 

  • Almeida TRA, Presti FT, Cruz VP, Wasko AP (2019) Genetic analysis of the endangered hyacinth macaw (Anodorhynchus hyacinthinus) based on mitochondrial markers: different conservation efforts are required for different populations. J Ornithol 160:711–720

    Google Scholar 

  • Arruda WDS, Oldeland J, Paranhos Filho AC, Pott A, Cunha NL, Ishii IH, Damasceno-Jr GA (2016) Inundation and fire shape the structure of riparian forests in the Pantanal, Brazil. PLoS One 11:e0156825

    PubMed  PubMed Central  Google Scholar 

  • Baker WL (2015) Historical northern spotted owl habitat and old-growth dry forests maintained by mixed-severity wildfires. Landsc Ecol 30:655–666

    Google Scholar 

  • Barbosa LA, dos Anjos Garnés SJ, Sanabria PLA, Fernandes V & dos Santos CRB (2009) Quantificação e identificação de vegetação arbórea de cordilheiras do Pantanal do Negro, MS, por meio de amostragem em campo e classificação de imagem do satélite Quick Bird. Anais 2° Simpósio de Geotecnologias no Pantanal, Corumbá. Embrapa Informática Agropecuária/INPE, p.720–729

  • Barros AE, Morato RG, Fleming CH, Pardini R, Oliveira-Santos LGR, Tomas WM, Prado PI (2022) Wildfires disproportionately affected jaguars in the Pantanal. Commun Biol 5:1028. https://doi.org/10.1038/s42003-022-03937-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagne KE, Purcell KL, Rotenberry JT (2008) Prescribed fire, snag population dynamics, and avian nest site selection. For Ecol Manag 255:99–105

    Google Scholar 

  • Berlinck CN, Lima LHA, Pereira AMM, Carvalho EAR, Paula RC, Thomas WM, Morato RG (2021) The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz J Biol 82:1–2

    Google Scholar 

  • BirdLife International (2023) Species factsheet: Anodorhynchus hyacinthinus. Downloaded from http://www.birdlife.org. Accessed 10 Feb 2023

  • Borges RC (2020) A tragédia do Pantanal: seca, fogo e fome cinzenta. Dowloaded from http://faunanews.com.br/2020/10/13/a-tragedia-do-pantanal-seca-fogo-e-fome-cinzenta/. Accessed 29 Jun 2021

  • Bicalho EM, Rosa BL, Souza AED, Rios CO, Pereira EG (2016) Do the structures of macaw palm fruit protect seeds in a fire-prone environment? Acta Bot Bras 30:540–548

    Google Scholar 

  • Bosso L, Ancillotto L, Smeraldo S, D’Arco S, Migliozzi A, Conti P, Russo D (2018) Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment. Int J Wildland Fire. https://doi.org/10.1071/wf18072

  • Brooker MG, Rowley I (1991) Impact of wildfire on the nesting behaviour of birds in heathland. Wildl Res 18:249–263

    Google Scholar 

  • Colli-Silva M & Fernandes-Jr AJ (2020) Sterculia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. available at: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB23607. Access in: 17 jun. 2021

  • Colombo CA, Chorfi Berton LH, Diaz BG, Ferrari RA (2018) Macauba: a promising tropical palm for the production of vegetable oil. OCL 25:D108. https://doi.org/10.1051/ocl/2017038

    Article  Google Scholar 

  • Churchwell RT, Davis CA, Fuhlendorf SD, Engle DM (2008) Effects of patch-burn management on dickcissel nest success in a tallgrass prairie. J Wildl Manag 72:1596–1604

    Google Scholar 

  • Damasceno-Jr GA, Roque FO, Garcia LC, Ribeiro DB, Tomas WM, Scremin-Dias E, Dias FA, Libonati R, Rodrigues JA, Santos FLM, Pereira AMM, Souza EB, Reis LK, Oliveira MR, Souza AHA, Manrique-Pineda DA (2021) Lessons to be learned from the wildfire catastrophe of 2020 in the Pantanal wetland. Wetl Sci Pract 38:107–115

    Google Scholar 

  • Davis MA, Peterson DW, Reich PB, Crozier M, Query T, Mitchell E, Huntington J, Bazakas P (2000) Restoring savanna using fire: impact on the breeding bird community. Restor Ecol 8:30–40

    Google Scholar 

  • Develey PF (2021) Bird conservation in Brazil: challenges and practical solutions for a key megadiverse country. Perspect Ecol Conserv 19(2):171–178

    Google Scholar 

  • Duquette CA, Hovick TJ, Limb RF, McGranahan DA, Sedevic KK (2020) Restored fire and grazing regimes influence nest selection and survival in Brewer's blackbirds Euphagus cyanocephalus. Acta Ornithol 54:171–180

    Google Scholar 

  • Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF, Doherty TS, Haslem A, Kelly LT, Sato CF, Sitters H, Aquilué N, Bell K, Chadid M, Duane A, Meza-Elizalde MC, Giljohann KM, González TM, Jambhekar R, Lazzari J et al (2021) How fire interacts with habitat loss and fragmentation. Biol Rev 96:976–998

    PubMed  Google Scholar 

  • Faria PJ, Guedes NM, Yamashita C, Martuscelli P, Miyaki CY (2008) Genetic variation and population structure of the endangered hyacinth macaw (Anodorhynchus hyacinthinus): implications for conservation. Biodivers Conserv 17:765–779

    Google Scholar 

  • Fava WS, Silva Covre W, Sigrist MR (2011) Attalea phalerata and Bactris glaucescens (Arecaceae, Arecoideae): phenology and pollination ecology in the Pantanal, Brazil. Flora: Morphol Distrib Funct Ecol Plants 206:575–584

    Google Scholar 

  • Ferreira BHS, Guerra A, da Rosa Oliveira M, Reis LK, Aptroot A, Ribeiro DB, Garcia LC (2021) Fire damage on seeds of Calliandra parviflora Benth. (Fabaceae), a facultative seeder in a Brazilian flooding savanna. Plant Species Biol. https://doi.org/10.1111/1442-1984.12335

  • Ferreira BHS, Oliveira MR, Fernandes RAM, Nacagava VAF, Arguelho BA, Ribeiro DB, Pott A, Damasceno Jr GA, Garcia LC (2023) Flowering and fruiting show phenological complementarity in both trees and non-trees in mosaic-burnt floodable savanna. J Environ Manage  337:117665

  • Fidelis A, Zirondi HL (2021) And after fire, the Cerrado flowers: a review of post-fire flowering in a tropical savanna. Flora 280:151849. https://doi.org/10.1016/j.flora.2021.151849

    Article  Google Scholar 

  • Filho W, Azeiteiro UM, Salvia AL, Fritzen B, Libonati R (2021) Fire in paradise: why the Pantanal is burning. Environ Sci Pol 123:31–34

    Google Scholar 

  • França LF, Ragusa-Netto J, Paiva LVD (2009) Consumo de frutos e abundância de Tucano Toco (Ramphastos toco) em dois habitats do Pantanal Sul. Biota Neotrop 9:125–130

    Google Scholar 

  • Flores BM, de Sa Dechoum M, Schmidt IB, Hirota M, Abrahão A, Verona L, Pecoral LLF, Cure MB, Giles AL, Costa PB, Pamplona MB, Mazzochini GG, Groenendijk P, Minski GL, Wolfsdorf G, Sampaio AB, Piccolo B, Melo L, Lima RF, Oliveira RS (2021) Tropical riparian forests in danger from large savanna wildfires. J Appl Ecol 58:419–430

    Google Scholar 

  • Frota AVB, Vitorino BD, Silva Nunes JR, Silva CJ (2020) Main trends and gaps in studies for bird conservation in the Pantanal wetland. Neotrop Biol Conserv 15:427–445

    Google Scholar 

  • Garcia LC, Szabo JK, de Oliveira Roque F, Pereira ADMM, da Cunha CN, Damasceno-Jr GA, Morato RG, Tomas WM, Libonati R, Ribeiro DB (2021) Record-breaking wildfires in the world's largest continuous tropical wetland: integrative fire management is urgently needed for both biodiversity and humans. J Environ Manag 293:112870

    CAS  Google Scholar 

  • Geary WL, Buchan A, Allen T, Attard D, Bruce MJ, Collins L, Ecker TE, Fairman TA, Hollings T, Loeffler E, Muscatello A, Parkes D, Thomson J, White M, Kelly E (2021) Responding to the biodiversity impacts of a megafire: a case study from South-Eastern Australia’s black summer. Divers Distrib 00:1–16

    Google Scholar 

  • Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO (2018) The collection 6 MODIS burned area mapping algorithm and product. Remote Sens Environ 217:72–85

    PubMed  PubMed Central  Google Scholar 

  • Gris D, Paixão E, Arruda RC, Ishii IH, Marques MR, Damasceno-Junior GA (2020) Growth and establishment of monodominant stands affected by ENSO and flooding in the Pantanal. Sci Rep 10:1–13

  • Guedes NMR (1993) Biologia reprodutiva da Arara Azul (Anodorhynchus hyacinthinus) no Pantanal de Mato Grosso do Sul, Brasil. M.Sc. thesis, Universidade de São Paulo, Piracicaba, Brazil

  • Guedes NMR (2004b) Araras azuis: 15 anos de estudos no Pantanal. Anais do IV Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá, MS, Brazil

  • Guedes NMR (2004a) Management and conservation of the large macaws in the wild. Ornitol Neotrop 15:279–283

    Google Scholar 

  • Guedes NMR (2009) Sucesso reprodutivo, mortalidade e crescimento de filhotes de araras azuis Anodorhynchus hyacinthinus (Aves, Psittacidae) no Pantanal, Brasil. Phd thesis. Universidade Estadual Paulista "Júlio de Mesquita Filho” - UNESP, Brazil

  • Guedes NMR, Harper LH (1995) Hyacinth macaw in the Pantanal. In: Abramson, J, Speen, B. L., Thonsem, J. B. (eds) The large macaws: their care, breeding, and conservation. Fort Bragg: Raintree publications 394–421

  • Guedes NMR, Bianchi CA, Barros Y (2008) Anodorhynchus hyacinthinus In: Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Machado, Â. B. M., Drummond, G. M., Paglia, A. P. (eds). 1 ed. Brasília, DF: MMA; Belo Horizonte, MG: Fundação Biodiversitas, (2008) V.II – p. 467–468. ISBN 978–85–7738-102-9

  • Guedes NMR, Scherer-Neto P, Ferreira LP, Fontoura FM, Carvalho BHG (2020) Avaliação do impacto do fogo sobre as araras azuis Anodorhynchus hyacinthinus no Perigara, Pantanal – MT, Brasil. 35, Campo Grande Instituto Arara Azul

  • Guedes NMR, Scherer-Neto P, Fontoura FM, Ferreira LP, Ramalho K, Lourenço ACP, Carvalho BHG, Ferramosca MR, Moreira TA (2021) Macaws survive fires and provide hope for resilience – stubborn survivors. Pantanal Sci Mag 6:36–41 ISSN 2357-9056

    Google Scholar 

  • Guedes NMR, Toledo MCB, Fontoura FM, da Silva GF, Donatelli RJ (2022) Growth model analysis of wild hyacinth macaw (Anodorhynchus hyacinthinus) nestlings based on long-term monitoring in the Brazilian Pantanal. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-19677-5

    Article  CAS  Google Scholar 

  • Guerra A, Oliveira Roque F, Garcia LC, Ochoa-Quintero JM, Oliveira PTS, Guariento RD, Rosa IM (2020) Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91:104388

    Google Scholar 

  • Haslem A, Kelly LT, Nimmo DG, Watson SJ, Kenny SA, Taylor RS, Avitabile SC, Callister KE, Spence-Bailey LM, Clarke MF, Bennett AF (2011) Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. J Appl Ecol 48:247–256

    Google Scholar 

  • Heim RJ, Hölzel N, Heinken T, Kamp J, Thomas A, Darman GF, Smirenski SM, Heim W (2019) Post-burn and long-term fire effects on plants and birds in floodplain wetlands of the Russian Far East. Biodivers Conserv 28:1611–1628

    Google Scholar 

  • ICMBio (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume I /1. ed. Brasília, DF: ICMBio/MMA. 492 p

  • Johnson MA, Tomas WM, Guedes NMR (1997) On the hyacinth macaw's nesting tree: density of young Manduvis around adult trees under three different management conditions in the Pantanal wetland, Brazil. Rev Bras Ornitol 5:185–188

    Google Scholar 

  • Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E, Bennett AF, Buckland ST, Canelles Q, Clarke MF, Fortin M, Hermoso V, Herrando S, Keane RE, Lake FK, McCarthy MA, Morán-Ordóñez A, Parr CL, Pausas JG et al (2020) Fire and biodiversity in the Anthropocene. Science 370(6519)

  • Kovach WL (2004) Oriana for Windows, version 2.0. Kovach Computer Services, Pentraeth

  • Li X, Song K, Liu G (2020) Wetland fire scar monitoring and its response to changes of the Pantanal wetland. Sensors 20:4268. https://doi.org/10.3390/s20154268

    Article  PubMed  PubMed Central  Google Scholar 

  • Libonati R, Geirinhas JL, Silva PS, Russo A, Rodrigues JA, Belém LB, Nogueira J, Roque FO, DaCamara CC, Nunes AMB, Marengo JA, Trigo RM (2022) Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ Res Lett 17(1):015005

    Google Scholar 

  • Lima DF, Mello JH, Lopes IT, Forzza RC, Goldenberg R, Freitas L (2021) Phenological responses to climate change based on a hundred years of herbarium collections of tropical Melastomataceae. PLoS One 16(5):e0251360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenmayer DB, Cunningham RB, Nix HA, Tanton MT, Smith AP (1991) Predicting the abundance of hollow-bearing trees in montane forests of southeastern Australia. Aust J Ecol 16:91–98

    Google Scholar 

  • Linder P, Jonsson P, Niklasson M (1998) Tree mortality after prescribed burning in an old-growth scots pine forest in northern Sweden. Silva Fenn 32:339–349

    Google Scholar 

  • Lorenzi GMAC (2006) Acrocomia aculeata (Jacq.) Lodd. ex Mart. Arecaceae: bases para o extrativismo sustentável. Curitiba, PR. Phd thesis. Universidade Federal do Paraná, Curitiba, Brazil

  • Maciel EA, Martins VF, de Paula MD, Huth A, Guilherme FA, Fischer R, Giles A, Barbosa RI, Cavassan O, Martins FR (2021) Defaunation and changes in climate and fire frequency have synergistic effects on aboveground biomass loss in the Brazilian savanna. Ecol Model 454:109628

    Google Scholar 

  • Mandle L, Ticktin T (2012) Interactions among fire, grazing, harvest and abiotic conditions shape palm demographic responses to disturbance. J Ecol 100:997–1008

    Google Scholar 

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures–implications for conservation. Biol Conserv 132:311–321

    Google Scholar 

  • Manning AD, Lindenmayer DB, Barry SC (2004) The conservation implications of bird reproduction in the agricultural “matrix”: a case study of the vulnerable superb parrot of South-Eastern Australia. Biol Conserv 120:363–374

    Google Scholar 

  • Mardia KV & Jupp PE (2000) Directional statistics. Chicester: John Wiley and Sons

  • Martins PI, Belém LBC, Szabo JK, Libonati R, Garcia LC (2022) Prioritising areas for wildfire prevention and post-fire restoration in the Brazilian Pantanal. Ecol Eng 176:106517

    Google Scholar 

  • Menezes LS, de Oliveira AM, Santos FL, Russo A, de Souza RA, Roque FO, Libonati R (2022) Lightning patterns in the Pantanal: untangling natural and anthropogenic-induced wildfires. Sci Total Environ 153021. https://doi.org/10.1016/j.scitotenv.2022.153021

  • Miranda CDS, Paranho Filho AC, Pott A (2018) Changes in vegetation cover of the Pantanal wetland detected by vegetation index: a strategy for conservation. Biota Neotrop 18:e20160297

    Google Scholar 

  • Montoya SG, Motoike SY, Kuki KN, Couto AD (2016) Fruit development, growth, and stored reserves in macauba palm (Acrocomia aculeata), an alternative bioenergy crop. Planta 244:927–938

    CAS  PubMed  Google Scholar 

  • Morellato LPC, Alberti LF & Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In: Hudson, I. L.; Keatley, M. R. (eds.) Phenological research. Dordrecht: Springer, p. 339–359

  • Mulkay P (2020) A courting behavioral study on a hyacinth macaw (Anodorhynchus hyacinthinus) pair. Pegasus Rev: UCF Undergrad Res J (URJ) 12:9–17

    Google Scholar 

  • Negrelle RRB (2015) Attalea phalerata Mart. ex Spreng.: aspectos botânicos, ecológicos, etnobotânicos e agronômicos. Ciência Florestal 25:1061–1066

    Google Scholar 

  • Ntongani WA, Andrew SM (2013) Bird species composition and diversity in habitats with different disturbance histories at Kilombero wetland, Tanzania. Open J Ecol 3:482–488

    Google Scholar 

  • O’Reilly L, Ogada D, Palmer TM, Keesing F (2006) Effects of fire on bird diversity and abundance in an east African savanna. Afr J Ecol 44:165–170. https://doi.org/10.1111/j.1365-2028.2006.00601.x

    Article  Google Scholar 

  • Oliveira JF Jr, Teodoro PE, da Silva Junior CA, Baio FHR, Gava R, Capristo-Silva GF, Gois G, Filho WLFC, Lima M, Santiago DB, Freitas WK, Santos PJ, Costa MS (2020) Fire foci related to rainfall and biomes of the state of Mato Grosso do Sul, Brazil. Agric For Meteorol 282:107861

    Google Scholar 

  • Oliveira MR, Szabo JK, Tomas WM, Guedes NMR, Santos-Jr A, Padovani CR, Camilo AR, Peterson AT, Garcia LC (2021a) Lack of protected areas and future habitat loss threaten the hyacinth macaw Anodorhynchus hyacinthinus and its main food and nesting resources. IBIS 163(4):1217–1234

  • Oliveira MR, Tomas WM, Guedes NMR, Peterson AT, Szabo JK, Santos-Jr A, Camilo AR, Padovani CR, Garcia LC (2021b) The relationship between scale and predictor variables in species distribution models applied to conservation. Biodivers Conserv 30:1971–1990

    Google Scholar 

  • O’Neil ST, Coates PS, Brussee BE, Ricca MA, Espinosa SP, Gardner SC, Delehanty DJ (2020) Wildfire and the ecological niche: diminishing habitat suitability for an indicator species within semi-arid ecosystems. Glob Chang Biol 26(11):6296–6312

    PubMed  PubMed Central  Google Scholar 

  • Palermo AC, Miranda HS (2012) Efeito do fogo na produção de frutos de Qualea parviflora Mart. (Vochysiaceae) em cerrado sensu stricto. Rev Árvore 36:685–693

    Google Scholar 

  • Pinho JB, Nogueira FM (2003) Hyacinth macaw (Anodorhynchus hyacinthinus) reproduction in the northern Pantanal, Mato Grosso, Brazil. Ornitología Neotrop 14:29–38

    Google Scholar 

  • Pivello VR, Vieira I, Christianini AV, Ribeiro DB, Silva Menezes L, Berlinck CN, Melo FPL, Marengo JA, Tornquist CG, Tomas WM, Overbeck GE (2021) Understanding Brazil’s catastrophic fires: causes, consequences and policy needed to prevent future tragedies. Perspect Ecol Conserv 19(3):233–255. https://doi.org/10.1016/j.pecon.2021.06.005

    Article  Google Scholar 

  • Pizo MA, Donatti CI, Guedes NMR, Galetti M (2008) Conservation puzzle: endangered hyacinth macaw depends on its nest predator for reproduction. Biol Conserv 141:792–796

    Google Scholar 

  • Presti FT, Guedes NM, Antas PT, Miyaki CY (2015) Population genetic structure in hyacinth macaws (Anodorhynchus hyacinthinus) and identification of the probable origin of confiscated individuals. J Hered 106:491–502

    CAS  PubMed  Google Scholar 

  • R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rivaben RC, Pott A, Bueno ML, Parolin P, Neyra MOC, Oldeland J et al (2021) Do fire and flood interact to determine forest islet structure and diversity in a Neotropical wetland? Flora 281:151874

    Google Scholar 

  • Rodrigues-Jr AG, Oliveira TG, de Souza PP, Ribeiro LM (2016) Temperature effects on Acrocomia aculeata seeds provide insights into overcoming dormancy in neotropical savanna palms. Flora 223:30–37

    Google Scholar 

  • Roque FO, Ochoa-Quintero J, Ribeiro DB, Sugai LS, Costa-Pereira R, Lourival R, Bino G (2016) Upland habitat loss as a threat to Pantanal wetlands. Conserv Biol 30:1131–1134

    PubMed  Google Scholar 

  • Salles CAO, Corá TCL, Salis SM, Urbanetz C, Branco OD (2016) Fenologia da Bocaiuva, safra 2015–2016, em Antônio Maria Coelho, Corumbá, MS. Anais do 4° Evento de Iniciação Científica do Pantanal na XI Semana de Biologia. Corumbá: Embrapa Pantanal, Brazil

  • Santos-Jr A, Tomas WM, Jorge MHA, Hay JDV (2013) Efeito do isolamento de árvores de Sterculia apetala sobre a emergência de plântulas no pantanal. Biotemas 26:61–67

  • Santos-Jr A, Tomas WM, Ishii IH, Guedes NM, Hay JD (2007) Occurrence of hyacinth macaw nesting sites in Sterculia apetala in the Pantanal wetland, Brazil. Gaia Sci 1:127–130

  • Santos-Jr AD (2010) Análise de populações de Sterculia apetala em diferentes cenários de manejo da paisagem e sua influência no oferecimento futuro de habitat reprodutivo para Anodorhynchus hyacinthinus no Pantanal. PhD thesis. Universidade de Brasília, Brazil

  • Scherer-Neto P, Guedes NMR, Toledo MCB (2019) Long-term monitoring of a hyacinth macaw Anodorhynchus hyacinthinus (Psittacidae) roost in the Pantanal, Brazil. Endanger Species Res 39:25–34

  • Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Nino. Nature 414:437–440

    CAS  PubMed  Google Scholar 

  • Silva-Jr CA, Teodoro PE, Delgado RC, Teodoro LPR, Lima M, de Andréa Pantaleão A, Baio F HR, Azevedo GV, Azevedo GTOS, Capristo-Silva GF & Arvor D (2020) Persistent fire foci in all biomes undermine the Paris Agreement in Brazil. Sci Rep 10, 1–14.

  • SpeciesLink (2021) Species link. Available in: http://www.splink.org.br. Accessed 21 Apr 2021

  • Steenvoorden J, Meddens AJ, Martinez AJ, Foster LJ, Kissling WD (2019) The potential importance of unburned islands as refugia for the persistence of wildlife species in fire-prone ecosystems. Ecol Evol 9:8800–8812

    PubMed  PubMed Central  Google Scholar 

  • Stojanovic D, Webb nee Voogdt J, Webb M, Cook H, Heinsohn R (2016) Loss of habitat for a secondary cavity nesting bird after wildfire. For Ecol Manag 360:235–241

    Google Scholar 

  • Ting S, Hartley S, Burns KC (2008) Global patterns in fruiting seasons. Glob Ecol Biogeogr 17(5):648–657

    Google Scholar 

  • Tomas WM, Berlinck CN, Chiaravalloti RM, Faggioni GP, Strüssmann C, Libonati R, Morato R (2021) Distance sampling surveys reveal 17 million vertebrates directly killed by the 2020’s wildfires in the Pantanal, Brazil. Sci Rep 11(1):1–8

    Google Scholar 

  • Tsagris M, Athineou G, Adam C, Sajib A, Amson E, Waldstein MJ (2022) A Collection of Functions for Directional Data Analysis. https://cran.r-project.org/web/packages/Directional/Directional.pdf

  • Valentin-Silva A, Alves VN, Tunes P, Guimarães E (2021) Fire does not change sprouting nor flowering, but affects fruiting phenology in a Neotropical savanna community. Flora 283:151901. https://doi.org/10.1016/j.flora.2021.151901

    Article  Google Scholar 

  • Vallejo S (2011) Lineamientos para el aprovechamiento sostenible de las palmas oleaginosas Colombianas Oenocarpus bataua Mart, Acrocomia aculeata (Jacq.) Lodd. ex Mart. y Attalea butyracea (Mutis ex Lf) Wess. Boer. Thesis. Pontificia Universidad Javeriana, Colombia

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. https://doi.org/10.5194/acp-10-11707-2010

    Article  CAS  Google Scholar 

  • Varela S, Anderson RP, García-Valdés R, Fernández-González F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091

    Google Scholar 

  • Vianna SA, Domenech HLM, Silva RHD, Colombo CA, Pott A (2021) Morphological characterization and productivity estimates of Acrocomia totai Mart. (Arecaceae)–a sustainable alternative of extractivism and cultivation. Rev Bras Frutic 43:1–18

    Google Scholar 

  • Vianna SA (2017) A new species of Acrocomia (Arecaceae) from Central Brazil. Phytotaxa 314:45–54

    Google Scholar 

  • Ward M, Tulloch AI, Radford JQ, Williams BA, Reside AE, Macdonald SL, Watson JE (2020) Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat Ecol Evol 4(10):1321–1326

  • Wiebe KL (2014) Responses of cavity-nesting birds to fire: testing a general model with data from the northern flicker. Ecology 95:2537–2547

    Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th Prentice Hall, Upper Saddle River, NJ

  • Zorzi BT (2009) Frugivoria por Tapirus terrestris em três regiões do Pantanal, Brasil. Dissertação de mestrado, Universidade Federal de Mato Grosso do Sul. Brazil

Download references

Acknowledgements

This study was partly financed by the Fundação Universidade Federal de Mato Grosso do Sul - UFMS/MEC - Brazil, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. We thank Fundo Brasileiro Para a Biodiversidade – FUNBIO and Instituto Humanize (FUNBIO Scholarship No. 041/2021), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support to the Noleedi Project (CNPq Grant Number: 441948/2018-9), the Andura Project (CNPq Grant Number: 441971/2018-0), and the Nucleus of Fire and Wetland Studies (NEFAU/PELD) (grant number: 445354/2020-8); and Ministry of Science, Technology and Innovation (Brazil) to the Pantanal Research Network (grant number: FINEP: 01.20.0201.00), LCG thanks to L’Or´eal-UNESCO-the Brazilian Academy of Sciences (ABC) for the “For Women in Science” award, partners and sponsors of Instituto Arara Azul, as well as the field team during the Pantanal fires in 2019 and 2020: K.R.A. Ramalho, L.P. Ferreira, A.C. Lourenço, B.H.G. Carvallho, P. Scherer-Neto, E.G. Castanho, E. Mense, M.R.F. Cardoso, L. Rocha, E.S. Freitas, G.R. Silva, T. Moreira. We also thank the editor and an anonymous reviewer whose input has improved our manuscript.

Funding

Fundo Brasileiro Para a Biodiversidade – FUNBIO and Instituto Humanize (FUNBIO Scholarship No. 041/2021).

Author information

Authors and Affiliations

Authors

Contributions

BHSF conceived the idea, analysed the data, and wrote the first draft; MRO generated the distribution models, supported the writing, and contributed to the discussion; JAR generated the maps, analysed the results, and critically revised the text; FMF collected data in the field; NMRG collected data in the field, provided photographs, participated in the discussion and in the bibliographic review and critically revised the text; JKS contributed to the discussion and the bibliographic review, critically revised the text including language editing; RL generated the maps, analysed the results, critically revised the text, and contributed to the bibliographic review; LCG conceived the idea, formulated the hypotheses, guided the study, and critically revised the text.

Corresponding author

Correspondence to Bruno Henrique dos Santos Ferreira.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

All authors consent to the publication of this study.

Conflicts of Interest/Competing Interests

No conflict at all.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Ferreira, B.H., da Rosa Oliveira, M., Rodrigues, J.A. et al. Wildfires Jeopardise Habitats of Hyacinth Macaw (Anodorhynchus hyacinthinus), a Flagship Species for the Conservation of the Brazilian Pantanal. Wetlands 43, 47 (2023). https://doi.org/10.1007/s13157-023-01691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-023-01691-6

Keywords

Navigation