Skip to main content

Advertisement

Log in

Distributions of the Non-Native Mangrove Sonneratia apetala in China: Based on Google Earth Imagery and Field Survey

  • Wetland Restoration
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The non-native mangrove species, Sonneratia apetala, was widely planted in coastal restoration projects of China in the past three decades, and dispersed in mangrove habitats in some introduction areas, which aroused wide attention from scientists and forest managers. Therefore, it is an urgent need to investigate their distributing patterns and build a dataset with basic information for natural mangrove conservation and restoration. The techniques combined field survey and visual interpretation based on sub-meter spatial resolution imagery from Google Earth (GE). The results showed that the boundary of stable S. apetala populations was ranged from 18°15′ N to 25°36′ N, with a total area of 3,804.86 ha in China in 2020. Guangdong had the largest distribution area of 3,217.34 ha, accounting for 84.56% of the total S. apetala populations in China, within which Zhanjiang (20°35'-21°30' N) took the largest amount. The spatial distribution of S. apetala in China followed the following three characteristics, 1) S. apetala was concentrated in the mid-latitude region (20°00'-23°00' N) of the southeast coast of China, especially along the coasts of Leizhou Bay (20°35'-21°30' N) in Guangdong; 2) S. apetala populations were commonly found in the middle to low tidal zones and at the seaward edges of native mangroves; 3) the dispersal S. apetala populations were found along rivers, tidal creeks, and other water systems, which also concentrated in estuaries or bays with freshwater inflow, on the coastal zones with low salinity, and in bare mudflat or low-shading forest edges, and forest gaps as well.

摘要

外来红树植物无瓣海桑 (Sonneratia apetala) 在过去30年被广泛应用于中国滨海湿地的修复工程, 并在引种区周边的天然红树林中发生扩散, 引起学者和管理者的关注。因此, 探寻无瓣海桑在中国的分布现状和规律十分迫切, 将为中国红树林的保护和恢复提供数据支撑。本研究旨在通过谷歌地球 (Google Earth) 亚米级分辨率遥感影像的目视解译, 结合实地调查, 获得无瓣海桑在中国的分布现状与规律。研究结果表明: 1. 截止2020年, 中国无瓣海桑稳定种群分布的北界为福建省莆田市仙游县 (25°36′N), 南界为海南省三亚市 (18°15′N), 分布面积达到3365.9 hm2; 广东省分布面积为3217.34 hm2, 占该物种全国分布面积的84.56%, 其在广东湛江市的分布面积最大。2. 无瓣海桑在中国的空间分布主要遵循以下三个特征: (1) 集中分布在东南沿海的中纬度地区 (20°00'-23°00' N), 特别是广东省雷州湾沿岸 (20°35'-21°30' N); (2) 常分布在中潮带和低潮带, 即乡土红树林的向海一侧外缘; (3) 呈现沿河流、水道、潮沟等水系分布的特点, 集中于有淡水汇入的河口湾区以及低盐的河口沿岸区域, 且多发现于无遮光的光滩或低遮光的林缘及林窗区域。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data will be available upon request to the corresponding author.

References

  • Alongi DM, Brinkman R (2011) Hydrology and biogeochemistry of mangrove forests. Forest Hydrology and Biogeochemistry 216:203–219

    Article  Google Scholar 

  • Beselly S, van der Wegen M, Grueters U, Reyns J, Dijkstra J, Roelvink D (2021) Eleven years of mangrove-mudflat dynamics on the Mud Volcano-Induced Prograding Delta in east Java, Indonesia: Integrating UAV and satellite imagery. Remote Sens 13(6):1084

    Article  Google Scholar 

  • Bey A, Diaz A, Maniatis D, Marchi G, Mollicone D, Ricci S, Bastin J, Moore R, Federici S, Rezende M, Patriarca C, Turia R, Gamoga G, Abe H, Kaidong E, Miceli G (2016) Collect earth: land use and land cover assessment through augmented visual interpretation. Remote Sens 8(10):807

    Article  Google Scholar 

  • Biswas S, Biswas PL, Hasan L, Yan E, Xu M, Islam K (2018) Plant invasion in mangrove forests worldwide. For Ecol Manage 429:480–492

    Article  Google Scholar 

  • Bradley B, Mustard J (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16(3):1132–1147

    Article  PubMed  Google Scholar 

  • Catford J, Vesk P, Richardson D, Pyšek P (2011) Quantifying levels of biological invasion: towards the objective classification of invaded and invisible ecosystems. Glo Change Biol 18(1):44–62

    Article  Google Scholar 

  • Chen L (2019) Invasive Plants in Coastal Wetlands: Patterns and Mechanisms. In: An S, Verhoeven J (eds) Wetlands: Ecosystem Services, Restoration and Wise Use Ecological Studies (Analysis and Synthesis), vol 238. Springer, Cham, pp 97–128

    Chapter  Google Scholar 

  • Chen L, Feng H, Gu X, Dong Y, Cheng P, Guo X, Lin Q, Tang T, Zhang Y, Zhu X, Yang S (2020) Linkages of flow regime and micro–topography: prediction for non–native mangrove invasion under sea-level rise. Ecosyst Health Sustain 6(1). https://doi.org/10.1080/20964129.2020.1780159

  • Chen L, Lin Q, Wkrauss K, Zhang Y, Cormier N, Yang Q (2021) Forest thinning in the seaward fringe speeds up surface elevation increment and carbon accumulation in managed mangrove forests. J Appl Ecol 58(9):1899–1909

    Article  CAS  Google Scholar 

  • Chen L, Tam NFY, Huang J, Zeng X, Meng X, Zhong C, Wong Y, Lin G (2008) Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China. Estuar Coast Shelf S 79:644–654

    Article  Google Scholar 

  • Chen L, Tam NFY, Wang W, Zhang Y, Lin G (2013) Significant niche overlap between native and exotic Sonneratia mangrove species along a continuum of varying inundation periods. Estuar Coast Shelf S 117:22–28

    Article  Google Scholar 

  • Chen L, Wang W, Zhang Y, Lin G (2009) Recent progresses in mangrove conservation, restoration and research in China. J Plant Ecol 2:45–54

    Article  Google Scholar 

  • Chen Y (2008) Techniques for planting mangrove trees. Wetland Science and Management 4(1):47–49

    Google Scholar 

  • Collins D, Avdis A, Allison P, Johnson H, Hill J, Piggott M, Hassan M, Damit A (2017) Tidal dynamics and mangrove carbon sequestration during the Oligo-Miocene in the South China Sea. Nat Commun 8:15698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conchedda G, Durieux L, Mayaux P (2008) An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J Photogramm Remote Sens 63(5):578–589

    Article  Google Scholar 

  • Congalton R, Green K (2009) Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Mapping Science Series. CRC Press: Boca Raton

    Google Scholar 

  • Diao J, Zeng X, Chen G (2010) Eco–physiological responses of Sonneratia apetala seedlings to different levels of shading. Chin J Ecol 29(7):1289–1294

    Google Scholar 

  • Estrada JA, Wilson CH, Nesmith JE, Flory SL (2016) Propagule quality mediates invasive plant establishment. Biol Invasions 18:1–8

    Article  Google Scholar 

  • Guo Z, Shao X, Xu Y, Hiroyuki M, Wataru O, Ryosuke S (2016) Identification of village building via Google Earth images and supervised machine learning methods. Remote Sens 8(4):271

    Article  Google Scholar 

  • He Z, Peng Y, Guan D, Hu Z, Chen Y, Lee S (2018) Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species. Plant Soil 432:425–436

    Article  CAS  Google Scholar 

  • Hong P, Wen Y, Xiong Y, Diao L, Gu X, Feng H, Yang C, Chen L (2020) Latitudinal gradients and climatic controls on reproduction and dispersal of the non–native mangrove Sonneratia apetala in China. Estuar Coast Shelf S 248:106749

    Article  Google Scholar 

  • Hu Q, Wu W, Tian X, Yu S, Song Q (2013) Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens 5(11):6026–6042

    Article  Google Scholar 

  • Hu Y, Xu Y, Xue C, Luo Y, Liao B, Zhu N (2019) Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province. Journal of South China Agricultural University (in Chinese) 40(6):95–103

    CAS  Google Scholar 

  • Huang C, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9(6):4869–4889

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson A, Dhanota J, Godfrey J, Jacobson H, Rossman Z, Stanish A, Walker H, Riggio J (2015) A novel approach to mapping land conversion using Google Earth with an application to East Africa. Environ Model Softw 72:1–9

    Article  Google Scholar 

  • Jia M, Wang Z, Mao D, Huang C, Lu C (2021) Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goals (SDGs) (in Chinese). Chin Sci Bull 66. https://doi.org/10.1360/TB-2020-1412

  • Kauffman JB, Arifanti VB, Trejo HH, García MCJ, Norfolk J, Cifuentes M, Hadriyanto D, Murdiyarso D (2017) The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Front Ecol Environ 15(4):183–188

    Article  Google Scholar 

  • Li F, Yang Q, Zan Q, Tam NFY, Shin KSP, LP. Vrijmoed L, Cheung S, (2011) Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: Implications for invasiveness of alien species. Mar. Pollut. Bull 62(9):1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Li H, Han Y, Chen J (2020) Combination of Google Earth imagery and Sentinel-2 data for mangrove species mapping. J Appl Remote Sens 14(1):1

    CAS  Google Scholar 

  • Li M, Mao L, Shen W, Liu S, Wei A (2013) Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar Coast Shelf S 130:111–120

    Article  Google Scholar 

  • Li Y, Duan B, Chen R, Pan W, Wang L, Chen Y, Zeng C, Li Z, Dai C (2011b) Growth adaptation of mangrove species Sonneratia apetala in north-introduced planting. Journal of Quanzhou Normal University (in Chinese) 29(6):20–24

    Google Scholar 

  • Li Y, Zheng D (1997) Effects of salinity and temperature on seed germination of the mangrove plant Sonneratia apetala. Forestry Scientific Research (in Chinese) 10(2):137–142

    Google Scholar 

  • Liu C, Hu Y, Zhang C, Hua G (2020) Discussion on the ecological restoration models of mangroves in Guangdong coastal area. Forestry and Environment Science (in Chinese) 36(4):102–106

    CAS  Google Scholar 

  • Liu L (2017) Effects of introduction of Sonneratia apetala on tidal flat environment in Shenzhen Bay. Ph.D. Thesis Sun Yat-Sen University Guangdong China

  • Liu M, Li H, Li L, Man W, Jia M, Wang Z, Lu C (2017) Monitoring the invasion of Spartina alterniflora using Multi-source High–resolution imagery in the Zhangjiang Estuary China. Remote Sens 9(6):539–557

    Article  Google Scholar 

  • Lu C, Liao B (2019) Consideration on ecological function of alien mangrove plants Sonneratia apetala and Laguncularia racemose. Wetland Science (in Chinese) 17(6):682–688

    Google Scholar 

  • Lu W, Yang S, Chen L, Wang W, Du X, Wang C, Ma Y, Lin GX, Lin GH (2014) Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE 9(3):e91238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lunstrum A, Chen L (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biol Biochem 75:223–232

    Article  CAS  Google Scholar 

  • Madden M (2004) Remote sensing and geographic information system operations for vegetation mapping of invasive exotics. Weed Techno 18:1457–1463

    Article  Google Scholar 

  • McKee K, Vervaeke W (2018) Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Glob Chang Biol 24(3):1224–1238

    Article  PubMed  Google Scholar 

  • Mcleod E, Chmura G, Bouillon S, Salm R, Björk M, Duarte M, Lovelock C, Schlesinger W, Silliman B (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560

    Article  Google Scholar 

  • Müllerová J, Pyšek P, Jarošík V, Pergl J (2005) Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum. J Appl Ecol 42(6):1042–1053

    Article  Google Scholar 

  • Nagendra H, Lucas R, Honrado J, Jongman HGR, Tarantino C, Adamo M, Mairota P (2013) Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic 33:45–59

    Article  Google Scholar 

  • Peng D, Chen L, Pennings S, Zhang Y (2018) Using a marsh organ to predict future plant communities in a Chinese estuary invaded by an exotic grass and mangrove. Limnol Oceanogr 63(6):2595–2605

    Article  Google Scholar 

  • Peng Y, Diao J, Zheng M, Guan D, Zhang R, Chen G, Lee S (2016) Early growth adaptability of four mangrove species under the canopy of an introduced mangrove plantation: Implications for restoration. For Ecol Manage 373:179–188

    Article  Google Scholar 

  • Potere D (2008) Horizontal positional accuracy of Google Earth’s high–resolution imagery archive. Sensors 8(12):7973–7981

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren H, Lu H, Shen W, Huang C, Guo Q, Li Z, Jian S (2009) Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species? Ecol Eng 30:1243–1248

    Article  Google Scholar 

  • Roy A (2014) Determinants of participation of mangrove–dependent communities in mangrove conservation practices. Ocean Coast Manag 98:70–78

    Article  Google Scholar 

  • ShyleshChandran M, Ravi A, John S, Sivan S, Asha M, Mammen P, Kumar K, Sruthi S (2020) Ecosystem Carbon Stock of Selected Mangrove Forests of Vypin - Cochin Region. Southwest Coast of India Wetlands 40(6):2263–2273

    Google Scholar 

  • Siddiqi NA (2001) Mangrove forestry in Bangladesh. Nibedan Press, Chittagong

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, London

    Book  Google Scholar 

  • Stocken T, Wee A, Ryck D, Vanschoenwinkel B, Friess D, Dahdouh-Guebas F, Simard M, Koedam N, Webb E (2019) A general framework for propagule dispersal in mangroves. Biol Reviews 94(1):1547–1575

    Article  Google Scholar 

  • Tian G, Chen L, Peng S, Yang X, Chen J, Chen M, Li J, Zeng Y (2010) Ecological traits of invasiveness of alien mangrove species Sonneratia apetala. Ecology and Environmental Sciences 19(12):3014–3020

    Google Scholar 

  • Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16:513–534

    Article  Google Scholar 

  • Walcker R, Gandois L, Proisy C, Corenblit D, Mougin E, Laplanche C, Ray R, Fromard F (2018) Control of “blue carbon” storage by mangrove ageing: evidence from a 66-year chronosequence in French Guiana. Glob Chang Biol 24(6):2325–2338

    Article  PubMed  Google Scholar 

  • Wang G, Guan D, Peart M, Chen Y, Peng Y (2013) Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. For Ecol Manage 310:539–546

    Article  Google Scholar 

  • Wang X, Xiao X, Xu X, Zou Z, Chen B, Qin Y, Zhang X, Dong J, Liu D, Pan L, Li B (2021) Rebound in China’s coastal wetlands following conservation and restoration. Nat Sustain. https://doi.org/10.1038/s41893-021-00793-5

    Article  PubMed  Google Scholar 

  • Williamson M, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170

    Article  Google Scholar 

  • Wu Z, Cai J, Ye Q (2000) Analysis on effects of introduction and popularization of Sonneratia apetala. Guangdong Forestry Science and Technology (in Chinese) 16(2):6–10

    Google Scholar 

  • Yin D, Wang L (2019) Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sens Environ 223:34–49

    Article  Google Scholar 

  • Yu X, Yang X, Wu Y, Peng Y, Yang T, Xiao F, Zhong Q, Xu K, Shu L, He Q, Tian Y, Yan Q, Wang C, Wu B, He Z (2020) Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions. Soil Biol. Biochem 144:107775

    Article  CAS  Google Scholar 

  • Zhang S (2010) A preliminary study on introduction and planting of Sonneratia apetala in Zhangpu County. Anhui Agricultural Science Bulletin (in Chinese) 16(5):139–141

    Google Scholar 

  • Zhang Z, Li J, Li Y, Liu W, Chen Y, Zhang Y, Li Y (2021) Spatially discontinuous relationships between salt marsh invasion and mangrove forest fragmentation. For Ecol Manage 499:119611

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zhangjiangkou National Mangrove Nature Reserve, Guangdong Neilingding-Futian National Nature Reserve, Zhanjiang Mangrove National Nature Reserve, Dongzhaigang National Nature Reserve, and Guangxi Mangrove Research Center for their support and permission in conducting field surveys. We are also very grateful to Dr. Luojia Hu for her valuable revisions to the manuscript and Prof. Hsing-Juh Lin for his confirmation of the distribution of S. apetala in Taiwan.

Funding

This work was supported by the National Natural Science Foundation Grant of China (42076176, 41771095), Natural Science Foundation of Fujian Province (2020J01048), Scientific and Technological Research Project for Social Welfare of Zhongshan City (2019B2005); Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (SML2020SP004), Science and Technology Basic Resources Investigation Program of China [No. 2017FY100704], Science and Technology Fund Program of Beihai [No.201995027] and University Innovation Foundation of Guangdong Province (2019KTSCX213).

Author information

Authors and Affiliations

Authors

Contributions

Luzhen Chen and Jialin Zhang contributed to the study conception and design. Data collection and analysis were performed by Jialin Zhang, Qiulian Lin and Yun Zhang. The first draft of the manuscript was written by Jialin Zhang and Luzhen Chen. Yisheng Peng, Lianghao Pan, and Yan Chen helped improve the accuracy of the data. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luzhen Chen.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2241 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lin, Q., Peng, Y. et al. Distributions of the Non-Native Mangrove Sonneratia apetala in China: Based on Google Earth Imagery and Field Survey. Wetlands 42, 35 (2022). https://doi.org/10.1007/s13157-022-01556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-022-01556-4

Keywords

Navigation