Skip to main content

Advertisement

Log in

Hydrological Instability of Ponds Reduces Functional Diversity of Freshwater Molluscs in Protected Wetlands

  • Wetland Biodiversity
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Different facets of biodiversity of freshwater molluscs were compared in 21 small ponds located in the wetland area around Lake Łuknajno (Nature Reserve protected by Ramsar Convention, UNESCO Biosphere Reserve). The ponds examined between 2010 and 2019 differed in their susceptibility to periodical drying out. In addition, the hydrological stability of many of them was significantly reduced in 2015-19 as a result of climatic changes (decrease in precipitation, shortening of the snow cover period, increase in the average temperature during the growing season, increase in the frequency of heat waves). The functional diversity of molluscs decreased linearly and monotonically with the increase in the frequency and intensity of drying up of ponds, so it can be treated as a good indicator of their hydrological instability. Other facets of biological diversity - taxonomic and phylogenetic - were unimodally related to differences in stability. Along time, species resistant to desiccation being specialized inhabitants of temporary water bodies clearly increase their percentage, and the share of species less resistant decreases.

Streszczenie

Porównano różne miary oceny różnorodności biologicznej słodkowodnych mięczaków w 21 drobnych zbiornikach położonych wokół Jeziora Łuknajno (Rezerwat Przyrody chroniony przez Konwencję Ramsarską, Rezerwat Biosfery UNESCO). Badane środowiska w latach 2010–2019 różniły się podatnością na okresowe wysychanie. Ponadto stopień stabilności hydrologicznej wielu z nich uległ znacznemu obniżeniu w latach 2015-19 w wyniku zmian klimatycznych (spadek ilości opadów, skrócenie okresu zalegania pokrywy śnieżnej, wzrost średniej temperatury w okresie wegetacji, wzrost częstości występowania fal upałów). Różnorodność funkcjonalna mięczaków zmniejszała się liniowo i monotonicznie wraz ze wzrostem częstotliwości i intensywności wysychania badanych zbiorników, dlatego można ją traktować jako dobry wskaźnik ich niestabilności hydrologicznej. Inne aspekty różnorodności biologicznej — taksonomiczne i filogenetyczne — były powiązane z różnicami w stabilności w sposób unimodalny. W trakcie trwania obserwacji gatunki odporne na wysychanie, będące wyspecjalizowanymi mieszkańcami tymczasowych zbiorników wodnych, wyraźnie zwiększały swój udział, a zmniejszał się udział gatunków mniej odpornych.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bady P, Dolédec S, Fesl C, Gayraud S, Bacchi M, Schöll F (2005) Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshwater Biology 50:159–173

    Article  Google Scholar 

  • Boix D, Sala J, Moreno-Amich R (2001) The faunal composition of Espolla pond (NE Iberian peninsula): the neglected biodiversity of temporary waters. Wetlands 21:577–592

    Article  Google Scholar 

  • Boss KJ (1974) Oblomovism in the Mollusca. Transactions of the American Microscopical Society 94:460–481

    Article  Google Scholar 

  • Brzeziński M, Mętrak M (2014) Spring migration rates and community structure of amphibians breeding in an old and newly established midfield ponds. The Journal of Vertebrate Biology 63:161–170

    Google Scholar 

  • Colwell RK (2009) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User's Guide and application published at: http://purl.oclc.org/estimates

  • Coughlan NE, Kelly TC, Davenport J, Jansen MA (2017) Up, up and away: Bird-mediated ectozoochorous dispersal between aquatic environments. Freshwater Biology 62:631–648

  • Florencio M, Serrano L, Gómez-Rodríguez C, Millán A, Díaz-Paniagua C (2009) Inter-and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Pond Conservation in Europe. Springer, Dordrecht, pp 323–339

  • Fortunato H (2015) Mollusks: tools in environmental and climate research. American Malacological Bulletin 33:310–324

    Article  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9

    Google Scholar 

  • Hannigan E, Kelly-Quinn M (2012) Composition and structure of macroinvertebrate communities in contrasting open-water habitats in Irish peatlands: implications for biodiversity conservation. Hydrobiologia (incorporating JAQU) 692:19–28

    Article  CAS  Google Scholar 

  • Horváth Z, Ptacnik R, Vad CF, Chase JM (2019) Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters 22:1019–1027

    Article  Google Scholar 

  • Jabłońska–Barna I (2007) Macroinvertebrate benthic communities in the macrophyte-dominated Lake Łuknajno (northeastern Poland). Oceanological and Hydrobiological Studies 36(Suppl 4):29–37

    Google Scholar 

  • Jedlikowski J, Brambilla M, Suska-Malawska M (2014) Fine-scale selection of nesting habitat in Little Crake Porzana parva and Water Rail Rallus aquaticus in small ponds. Bird Study 61:171–181

    Article  Google Scholar 

  • Jurkiewicz-Karnkowska E (2008) Aquatic mollusc communities in riparian sites of different size, hydrological connectivity and succession stage. Polish Journal of Ecology 56:99

    Google Scholar 

  • Jurkiewicz-Karnkowska E (2009) Diversity of aquatic malacofauna within a floodplain of a large lowland river (lower Bug River, eastern Poland). The Journal of Molluscan Studies 75:223–234

    Article  Google Scholar 

  • Jurkiewicz-Karnkowska E (2011) Effects of habitat conditions on the diversity and abundance of molluscs in floodplain water bodies of different permanence of flooding. Polish Journal of Ecology 59:165–178

    Google Scholar 

  • Jurkiewicz-Karnkowska E (2014) Sampling intensity in biodiversity assessment: malacofauna of selected floodplain water bodies. Folia Malacologica 22:21–30

    Article  Google Scholar 

  • Jurkiewicz-Karnkowska E (2015) Diversity of aquatic molluscs in a heterogenous section of a medium-sized lowland river-floodplain system: an example of intermediate disturbance hypothesis. Polish Journal of Ecology 63:559–572

    Article  Google Scholar 

  • Karasek T (2018) Development and testing of a new method for assessing the ecological status of freshwater environments based on non-lethal analysis of bentos. PhD Dissertation, University of Warsaw. https://www.apduwedupl/diplomas/170069/

  • Klimowicz H (1959) Tentative classification of small water bodies on the basis of the differentiation of the molluscan fauna. Polish Archives of Hydrobiology 6:85–103

    Google Scholar 

  • Kołodziejczyk A (1994) Mięczaki słodkowodne Suwalskiego Parku Krajobrazowego, Jeziora Suwalskiego Parku Krajobrazowego. Zesz Nauk Kom Człowiek i środowisko 7:243–265 (in Polish)

    Google Scholar 

  • Koperski P (2021) Linear and nonlinear effects of nutrient enrichments on the diversity of macrobenthos in lowland watercourses. Aquatic Ecology 55:1011–1031

    Article  Google Scholar 

  • Koperski P, Meronka R (2017) Environmental quality of a stream can be better predicted by phylogenetic than by taxonomic diversity. Knowledge and Management of Aquatic Ecosystems 418:16

    Article  Google Scholar 

  • Koperski P, Narożniak E, Mętrak M (2014) Composition of mollusk communities as a proxy in studies on seasonal dynamics of astatic water bodies. Monitoring Środowiska Przyrodniczego 15:23–31

    Google Scholar 

  • Lake PS (2000) Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19:573–592

    Article  Google Scholar 

  • Leigh C, Datry T (2017) Drying as a primary hydrological determinant of biodiversity in river systems: A broad-scale. Anal Ecography 40:487–499

    Article  Google Scholar 

  • Leps J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Lewandowski K, Kołodziejczyk A, Spyra A (2018) Molluscs of extremely artificial, small temporary water bodies in a city park. Folia Malacologica 26:167–175

    Article  Google Scholar 

  • Lewin I (2014) Mollusc communities of lowland rivers and oxbow lakes in agricultural areas with anthropogenically elevated nutrient concentration. Folia Malacologica 22:87–159

    Article  Google Scholar 

  • Lewin I, Spyra A, Krodkiewska M (2015) The importance of the mining subsidence reservoirs located along the trans-regional highway in the conservation of the biodiversity of freshwater molluscs in industrial areas (Upper Silesia, Poland). Water, Air, & Soil Pollution 226:189. https://doi.org/10.1007/s11270-015-2445-z

  • Lund JO, Wissinger SA, Peckarsky BL (2016) Caddisfly behavioral responses to drying cues in temporary ponds: implications for effects of climate change. Freshwater Science 35:619–630

    Article  Google Scholar 

  • Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography 24:728–740

    Article  Google Scholar 

  • Matthews J (2010) Anthropogenic climate change impacts on ponds: a thermal mass perspective. BioRisk 5:193

    Article  Google Scholar 

  • Matthews JH, Funk WC, Ghalambor CK (2012) 4 demographic approaches to assessing climate change impact: an application to pond-breeding frogs and shifting hydropatterns. Wildlife conservation in a changing climate. University of Chicago Press, Chicago, pp 58–85

    Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne JB (2002) Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104:59–70

    Article  Google Scholar 

  • Piechocki A, Wawrzyniak-Wydrowska B (2016) Guide to freshwater and marine Mollusca of Poland. Bogucki, Poznań

    Google Scholar 

  • Preetha K, Biju Kumar A (2018) Taxonomic distinctness and spatial variations of gastropod molluscs along Kerala Coast, India. Perspectives on Biodiversity of India Proceedings of International Biodiversity Congress, 196

  • Sanderson RA, Eyre MD, Rushton SP (2005) Distribution of selected macroinvertebrates in a mosaic of temporary and permanent freshwater ponds as explained by autologistic models. Ecography 28:355–362

    Article  Google Scholar 

  • Scheffer M, van Geest GJ, Zimmer K, Jeppesen E, Sondergaard M, Butler MG, de Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231

    Article  Google Scholar 

  • Sowa A, Krodkiewska M, Halabowski D, Lewin I (2019) Response of the mollusc communities to environmental factors along an anthropogenic salinity gradient. Science of Nature 106:1–17

    Article  Google Scholar 

  • Spyra A (2017) Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails. Science of Nature 104:1–12

    Article  CAS  Google Scholar 

  • Spyra A (2018) Distribution patterns and habitat requirements of freshwater snails in man-made ponds. Annales Zoologici Fennici 55:1–14

    Article  Google Scholar 

  • Vianey-Liaud MARC, Dussart G (1994) Starvation, desiccation and use of allosperm in the hermaphrodite freshwater snail Biomphalaria glabrata (Gastropoda: Pulmonata). The Journal of Molluscan Studies 60:255–262

    Article  Google Scholar 

  • Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129:301–305

    Article  Google Scholar 

  • Williams CD, Gormally MJ (2009) Spatio-temporal and environmental gradient effects on Mollusc communities in a unique wetland habitat (Turloughs). Wetlands 29:854–865

Download references

Acknowledgements

The author would like to thank Tomasz Karasek, Anna Zaborowska, Grzegorz Górecki, Ewa Narożniak, Jan Jedlikowski, Marcin Brzeziński and the students of the Faculty of Biology of the University of Warsaw participating in the field course “Flora i Fauna” between 2017 and 2019 for their help in obtaining the material. The author expresses his gratitude to the reviewers, in particular to One of Them, who has a deeply critical opinion about the methods used.

Author information

Authors and Affiliations

Authors

Contributions

I am the sole author of a concept and research project. I have prepared, collected and analyzed all data except for the activities mentioned in the acknowledgments. I am the sole author of all versions of the manuscript.

Corresponding author

Correspondence to Paweł Koperski.

Ethics declarations

Ethics Approval

Ethics approval was not required for this study according to local legislation.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable. 

Conflict of Interest

No conflict of interest arises from this publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 27.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koperski, P. Hydrological Instability of Ponds Reduces Functional Diversity of Freshwater Molluscs in Protected Wetlands. Wetlands 42, 42 (2022). https://doi.org/10.1007/s13157-022-01552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-022-01552-8

Keywords

Navigation