Spatial Heterogeneity of Surface Topography in Peatlands: Assessing Overwintering Habitat Availability for the Eastern Massasauga Rattlesnake

Abstract

The eastern massasauga rattlesnake (Sistrurus catenatus) relies on small-scale differences in peatland surface elevation to survive harsh overwintering conditions at the northern limit of its range. We characterized the spatial heterogeneity of surface topography in peatlands within the eastern Georgian Bay rock barrens landscape of Ontario, Canada, to assess available snake overwintering habitat. At six peatlands, we used a differential global positioning system to collect surface-elevation data. We created spatially-explicit surface models to map peatland surface topography, quantify habitat that was likely to remain unflooded during the overwintering period, and identify key characteristics associated with greater habitat availability. While surface elevations were spatially heterogeneous within and among sites, larger peatlands were associated with greater surface spatial variability relative to the lowest elevation measured within each site. However, even peatlands with very little spatial heterogeneity (average of 0.24 m above lowest elevation), provided unflooded overwintering habitat. Inter-annual weather conditions and peatland and watershed characteristics likely control the availability and distribution of unflooded overwintering habitat. We found that trees, specifically white pine (Pinus strobus) and maple (Acer spp.), were spatially associated with higher surface elevations and could be used to identify areas of unflooded winter habitat. Our findings are useful for landscape-scale assessments of available overwintering habitat to prioritize conservation and management efforts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Andrus RE, Wagner DJ, Titus JE (1983) Vertical zonation of Sphagnum mosses along hummock-hollow gradients. Canadian Journal of Botany 61(12):3128–3139. https://doi.org/10.1139/b83-352

    Article  Google Scholar 

  2. Asemaninejad A, Thorn RG, Branfireun BA, Lindo Z (2019) Vertical stratification of peatland microbial communities follows a gradient of functional types across hummock-hollow microtopographies. Ecoscience 26(3):249–258

    Article  Google Scholar 

  3. Barry WJ, Garlo AS, Wood CA (1996) Duplicating the mound-and-pool microtopography of forested wetlands. Restoration and Management Notes 14(1):15–21

    Google Scholar 

  4. Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecological Monographs 76:299–322

    Article  Google Scholar 

  5. Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proceedings: Biological Sciences 268(1473):1315–1321

    CAS  Google Scholar 

  6. Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biology 10:1043–1052

    Article  Google Scholar 

  7. Berube B, Rochefort L (2018) Production and decomposition rates of different fen species as targets for restoration. Ecological Indicators 91:105–115. https://doi.org/10.1016/j.ecolind.2018.03.069

    Article  Google Scholar 

  8. Boggie R (1972) Effect of water-table height on root development of Pinus contorta on deep peat in Scotland. Oikos 1:304–312. https://doi.org/10.2307/3543168

    Article  Google Scholar 

  9. Chapman S, Buttler A, Francez AJ, Laggoun-Defarge F, Vassander H, Schloter M, Combe J, Grosvernier P, Harms H, Epron D, Gilbert D, Mitchell E (2003) Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology and the Environment 1(10):525–532

    Article  Google Scholar 

  10. Crins WJ, Gray PA, Uhlig PWC, Wester MC (2009) The ecosystems of Ontario, part 1: ecozones and ecoregions. Ministry of Natural Resources Science and Information Branch, location, pp:1–76

  11. Duberstein JA, Conner WH (2009) Use of hummocks and hollows by trees in tidal freshwater forested wetlands along the Savannah River. Forest Ecology and Management 258:1613–1618. https://doi.org/10.1016/j.foreco.2009.07.018

    Article  Google Scholar 

  12. Duberstein JA, Krauss KW, Conner WH, Bridges WC, Shelburne VB (2013) Do hummocks provide a physiological advantage to even the most flood tolerant of tidal freshwater trees? Wetlands 33(3):399–408. https://doi.org/10.1007/s13157-013-0397-x

    Article  Google Scholar 

  13. Environment and Climate Change Canada (2019) Historical climate data. Available from: https://climate.weather.gc.ca

  14. Eppinga MB, Rietkerk M, Borren W, Lapshina ED, Bleuten W, Wassen MJ (2008) Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 22:520–536

    Article  CAS  Google Scholar 

  15. Flower K (2015) Land use governance in the Georgian bay UNESCO biosphere reserve: an institutional analysis and recommendations. School of Environmental Design and Rural Development, University of Guelph, Guelph, ON, M.Sc. thesis

    Google Scholar 

  16. Foster DR, King GA, Glaser PH, Wright HE Jr (1983) Origin of strong patterns in boreal peatlands. Nature 306:256–258. https://doi.org/10.1038/306256a0

    Article  Google Scholar 

  17. Glaser PH, Hansen BC, Siegel DI, Reeve AS, Morin PJ (2004) Rates, pathways and drivers for peatland development in the Hudson Bay lowlands, northern Ontario, Canada. Journal of Ecology 92:1036–1053. https://doi.org/10.1111/j.0022-0477.2004.00931.x

    Article  Google Scholar 

  18. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1(2):182–195. https://doi.org/10.2307/1941811

    Article  Google Scholar 

  19. Graham JD, Glenn NF, Spaete LP, Hanson PJ (2020) Characterizing peatland microtopography using gradient and microform-based approaches. Ecosystems 2020:1–17. https://doi.org/10.1007/s10021-020-00481-z

    Article  Google Scholar 

  20. Gregory PT (1982) Reptilian hibernation. In Biology of the Reptilia. Gans C, Pough FH, (eds.). Academic Press Inc., New York, USA. Vol. 13, pp. 53–154

  21. Harris LI, Roulet NT, Moore TR (2019) Mechanisms for the development of microform patterns in peatlands of the Hudson Bay lowland. Ecosystems 2020(23):741–767. https://doi.org/10.1007/s10021-019-00436-z

    Article  Google Scholar 

  22. Harvey DS, Weatherhead PJ (2006) Hibernation site selection by eastern massasauga rattlesnakes (Sistrurus catenatus catenatus) near their northern range limit. Journal of Herpetology 40(1):66–73. https://doi.org/10.1670/89-05A.1

    Article  Google Scholar 

  23. Holden J (2005) Peatland hydrology and carbon cycling: why small-scale process matters. Philosophical Transactions of the Royal Society A 363:2891–2913. https://doi.org/10.1098/rsta.2005.1671

    Article  CAS  Google Scholar 

  24. Jeglum JK (1974) Relative influence of moisture–aeration and nutrients on vegetation and black spruce growth in northern Ontario. Canadian Journal of Forest Research 4(1):114–126. https://doi.org/10.1139/x74-017

    Article  CAS  Google Scholar 

  25. Johnson G (1995) Spatial ecology, habitat preference, and habitat management of the eastern massasauga, Sistrurus C. catenatus, in a New York weakly-minerotrophic peatland. Ph.D. thesis, College of Environmental Science and Forestry, State University of New York, Syracuse, NY

  26. Johnson G (2000) Spatial ecology of the eastern massasauga (Sistrurus c. catentus) in a New York peatland. Journal of Herpetology 34(2):186–192

    Article  Google Scholar 

  27. Kettridge N, Binley A, Comas X, Cassidy NJ, Baird AJ, Harris A, van der Kruk J, Strack M, Milner A, Waddington JM (2012) Do peatland microforms move through time? Examining the development history of a patterned peatland using ground penetrating radar. Journal of Geophysical Research 117:G03030. https://doi.org/10.1029/2011JG001876

    Article  Google Scholar 

  28. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environmental Modelling and Software 53:173–189. https://doi.org/10.1016/j.envsoft.2013.12.008

    Article  Google Scholar 

  29. Lieffers VJ, Rothwell RL (1987) Rooting of peatland black spruce and tamarack in relation to depth of water table. Canadian Journal of Botany 65:817–821. https://doi.org/10.1139/b87-111

    Article  Google Scholar 

  30. Markle CE, Moore PA, Waddington JM (2020a) Temporal variability of overwintering conditions for a species-at-risk snake: implications for climate change and habitat management. Global Ecology and Conservation 22:e00923. https://doi.org/10.1016/j.gecco.2020.e00923

    Article  Google Scholar 

  31. Markle CE, Moore PA, Waddington JM (2020b) Primary drivers of reptile overwintering habitat suitability: integrating wetland ecohydrology and spatial complexity. BioScience in press

  32. Malhotra A, Roulet NT, Wilson P, Giroux-Bougard X, Harris LI (2016) Ecohydrological feedbacks in peatlands: an empirical test of the relationship among vegetation, microtopography and water table. Ecohydrology 9:1346–1357. https://doi.org/10.1002/eco.1731

    Article  Google Scholar 

  33. Malmer N, Svensson BM, Wallen B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica 4(29):483–496. https://doi.org/10.1007/BF02883146

    Article  Google Scholar 

  34. Marshall JC Jr, Manning JV, Kingsbury BA (2006) Movement and macrohabitat selection of the eastern massasauga in a fen habitat. Herpetologica 62(2):141–150. https://doi.org/10.1655/04-12.1

    Article  Google Scholar 

  35. Mercer JJ, Westbrook CJ (2016) Ultrahigh-resolution mapping of peatland microform using ground-based structure from motion with multiview stereo. Journal of Geophysical Research: Biogeosciences 121(11):2901–2916

    Google Scholar 

  36. Moore TR, De Young A, Bubier JL, Humphreys ER, Lafleur PM, Roulet NT (2011) A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14:646–567

    Article  CAS  Google Scholar 

  37. Moore PA, Lukenbach MC, Thompson DK, Kettridge N, Granath G, Waddington JM (2019) Assessing the peatland hummock-hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling. Biogeosciences 16(18):3491–3506. https://doi.org/10.5194/bg-16-3491-2019

    Article  CAS  Google Scholar 

  38. Murphy M, Laiho R, Moore TR (2009) Effects of water table drawdown on root production and aboveground biomass in a boreal bog. Ecosystems 12(8):1268–1282

    Article  CAS  Google Scholar 

  39. Nungesser MK (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecological Modelling 165(2–3):175–207. https://doi.org/10.1016/S0304-3800(03)00067-X

    Article  Google Scholar 

  40. Pedrotti E, Rydin H, Ingmar T, Hytteborn H, Turunen P, Granath G (2014) Fine-scale dynamics and community stability in boreal peatlands: revisiting a fen and a bog in Sweden after 50 years. Ecosphere 5(10):1–24. https://doi.org/10.1890/ES14-00202.1

    Article  Google Scholar 

  41. Pouliot R, Rochefort L, Karofeld E (2011a) Initiation of microtopography in revegetated cutover peatlands. Applied Vegetation Science 14(2):158–171. https://doi.org/10.1111/j.1654-109X.2010.01118.x

    Article  Google Scholar 

  42. Pouliot R, Rochefort L, Karofeld E, Mercier C (2011b) Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: is there a link? Acta Oecologica 37(4):346–354. https://doi.org/10.1016/j.actao.2011.04.001

    Article  Google Scholar 

  43. Core Team R (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/

    Google Scholar 

  44. Rochefort L, Vitt DH, Bayley SE (1990) Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71(5):1986–2000. https://doi.org/10.2307/1937607

    Article  Google Scholar 

  45. Rouse JD, Willson RJ (2002) Update COSEWIC status report on the massasauga Sistrurus catenatus in Canada, in COSEWIC assessment and update status report on the massasauga. Committee on the Status of Endangered Wildlife in Canada, Ottawa, pp 1–23

    Google Scholar 

  46. Rydin H, Mcdonald AJS (2013) Tolerance of Sphagnum to water level. Journal of Bryology 13(4):571–578. https://doi.org/10.1179/jbr.1985.13.4.571

    Article  Google Scholar 

  47. Shoemaker KT, Gibbs JP (2010) Evaluating basking-habitat deficiency in the threatened eastern massasauga rattlesnake. The Journal of Wildlife Management 74(3):504–513. https://doi.org/10.2193/2008-519

    Article  Google Scholar 

  48. Seigel RA (1986) Ecology and conservation of an endangered rattlesnake, Sistrurus catenatus, in Missouri, USA. Biological Conservation 35(4):333–346. https://doi.org/10.1016/0006-3207(86)90093-5

    Article  Google Scholar 

  49. Smith CS (2009) Hibernation of the eastern massasauga rattlesnake (Sistrurus c. catenatus) in northern Michigan. M.Sc. Thesis, Department of Biology, Purdue University, Lafayette, IN

  50. Smolarz AG, Moore PA, Markle CE, Waddington JM (2018) Identifying resilient eastern massasauga rattlesnake (Sistrurus catenatus) peatland hummock hibernacula. Canadian Journal of Zoology 96(9):1204–1031. https://doi.org/10.1139/cjz-2017-0334

    Article  Google Scholar 

  51. Spence C, Woo M (2003) Hydrology of subarctic Canadian shield: soil-filled valleys. Journal of Hydrology 279(1–4):151–166. https://doi.org/10.1016/S0022-1694(03)00175-6

    Article  Google Scholar 

  52. Spence C, Woo M (2006) Hydrology of subarctic Canadian shield: heterogeneous headwater basins. Journal of Hydrology 217(1–2):138–154. https://doi.org/10.1016/j.jhydrol.2005.05.014

    Article  Google Scholar 

  53. Stralberg D, Arseneault D, Baltzer JL, Barber QE, Bayne EM, Boulanger Y, Brown CD, Cooke HA, Devito K, Edwards J, Estevo CA, Flynn N, Frelich LE, Hogg EH, Johnston M, Logan T, Matsuoka SM, Moore P, Morelli TL, Morissette JL, Nelson EA, Nenzén H, Nielsen SE, Parisien MA, Pedlar JH, Price DT, Schmiegelow FKA, Slattery SM, Sonnentag O, Thompson DK, Whitman E (2020) Climate-change refugia in boreal North America: what, where, and for how long? Frontiers in Ecology and the Environment 18(5):261–270. https://doi.org/10.1002/fee.2188

    Article  Google Scholar 

  54. UNESCO (2015) Georgian bay. Ecological Sciences for Sustainable Development. Available from: http://www.unesco.org

    Google Scholar 

  55. USDA (2019) Plants database. Natural Resources Conservation Service. Available from: https://plants.sc.egov.usda.gov

    Google Scholar 

  56. Waddington JM, Morris PJ, Kettridge N, Thompson DK, Moore PA (2015) Hydrological feedbacks in northern peatlands. Ecohydrology 8(1):13–127. https://doi.org/10.1002/eco.1493

    Article  Google Scholar 

  57. Whitlow TH, Harris RW (1979) Flood tolerance in plants: a state-of-the-art review. California University of Davis. Available from: https://apps.dtic.mil/dtic/tr/fulltext/u2/a075938.pdf

  58. Yagi AR, Planck RJ, Yagi KT, Tattersall GJ (2020) A long-term study on massasaugas (Sistrurus catenatus) inhabiting a partially mined peatland: a standardized method to characterize snake overwintering habitat. Journal of Herpetology 54(2):235–244

    Article  Google Scholar 

  59. Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085. https://doi.org/10.5194/bg-9-4071-2012

    Article  CAS  Google Scholar 

  60. Zarco-Perello S, Simões N (2017) Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. PeerJ 5:e4078. https://doi.org/10.7717/peerj.4078

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zoltai SC, Vitt DH (1995) Canadian wetlands: environmental gradients and classification. Vegetatio. 118(1–2):131–137. https://doi.org/10.1007/BF00045195

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hope Freeman, Becky Janssen, Katie Black, Keegan Smith, Ian Martin, Danielle Hudson, Alex Furukawa, and Alanna Smolarz for assistance with field research. The authors would like to thank Magnetawan First Nation and their Department of Lands, Resources and Environment for their ongoing support and providing us the ability to conduct research on their lands. Funding was provided by an Indigenous and Northern Affairs Canada Indigenous Community-Based Climate Monitoring Program grant, an NSERC Discovery Grant (#289514) to JMW and by a Pattern Energy research grant to CEM, PAM and JMW.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chantel E. Markle.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 489 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markle, C.E., North, T.D., Harris, L.I. et al. Spatial Heterogeneity of Surface Topography in Peatlands: Assessing Overwintering Habitat Availability for the Eastern Massasauga Rattlesnake. Wetlands (2020). https://doi.org/10.1007/s13157-020-01378-2

Download citation

Keywords

  • Peatland
  • Surface topography
  • Snake habitat
  • Species at risk
  • Sistrurus catenatus